Analysis & Simulation of Apollo 11 Moon Flight

This review and analysis were created

both as a tribute and a commemoration
of the 50th anniversary of the historic Apollo 11 Flight to the Moon.

I had the good fortune to work on the development of the
inertial guidance system for this program. Our goal is to recreate the
journey of the Apollo vessel from earth to moon and back again.
We will do this by solving for the trajectories and
reviewing and simulating the rocket burns of the Apollo spacecralft.
Our analysis starts on page 18.

As an introduction to this analysis,
we also provide the historic background and context,
review the strategies, rocket fuel burn specs,
and orbit parameters required for the trip.

The Historic Apollo Flight to the Moon

The Apollo Space Program is regarded by many as one of the greatest engineering and scientific
accomplishments of all time. At its peak, it employed 400,000 people and its budget represented 2.2%
of all federal spending. On July 16, 1969, the Apollo 11 Saturn IV Spacecraft blasted off from Cape
Canaveral, FL, and four days later, the first man walked on the moon. Since that time, roughly 50
years ago, only twelve men have walked on the surface of the moon. After obtaining my M5 in Physics
from the University of Wisconsin, I had the good fortune to work on the Apollo Space Program as a
Reliability Project Engineer starting on July 16, 1966.

I worked on the development of the Inertial Guidance System and Computer at the AC Electronics
Facility located in Oak Creek, Wisconsin. The Apollo Guidance System (AGS), consisted of the digita
Apollo Guidance Computer (AGC) and the Inertial Measurement Unit (IMU), an assembly of a
three-gimbaled stable platform with three corresponding accelerometers positioned in roll, pitch, and
yaw. The were two AGSs used for guidance, one each in the Command and the Lunar Excursion
Module (LEM). In my 37 year career as a Senior Physicist, this was the most exciting project that [
have ever worked on. It was a project that had the attention of the whole world. Personally, one of the
things that I get a kick about concerning my work on Apollo, is the fact that:

the LEM that 1 helped develop still has some of its parts left on the surface of the moon.
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BACKGROUND

Why did we choose to go to the Moon?

In 1957, as part of the International Geophysical Year, the USSR launched the first ever artificial
satellite, Sputnik 1. It was launched with an R-7 missile, the world's first intercontinental ballistic missile
(ICBM). Sputnik orbited the earth emitting signals at frequencies that anyone with an amateur radio
could listen. The launch of Sputnik marked the unofficial start of the space race between the US and

the USSR.

Initially, the US responded by lauching a rocket of its own, the Vanguard TV3. However, it blew up on
the launch pad. Coupled with the very public failure of Vanguard TV3, the US desperately needed to
get out of the starting block in the space race. The US finally got off the ground with the launch of
Explorer 1 on February of 1958,

The first ICEIMs were deployed by the Sowviet Union in 1958, the United States followed the next year,
and China some 20} years later. The first principal U.5. ICBM was the silo-launched Minuteman
missile. On 12 April 1961, the USSR launched the first man into low earth orbit for one trip around the
earth. In response to this Soviet space challenge, on May 25, 1961, President John F Kennedy
announced his goal of putting a man on the moon by the end of the decade.

After 50 years, why have we not gone back to the Moon?

Shortly after Apollo 11, there were marked world changes, such as the Vietnam war and detente with
the Russians. As a result from these changes, and a lessening of public, political, and military interest
and will for space travel, there was a sharp decline in Apollo and Aerospace funding. On September 2,
1970, as a result of federal budget cuts, NASA announced it was canceling the Apollo H4 and J4
missions. In the next few years, Apollo funding dropped by 50%. The flight of Apollo 17 in late 1972
would bring the program to a close. This was the last time that man has set foot on the moon.

Despite huge gains in some areas of technology, such as computers, the Apollo liquid fuel rocket
technology still remains the state of the art. NASA is presently working on developing the Space
Launch System (SLS) which is capable of going to the moon and beyond to Mars. At present, the SLS
is over budget and delayed. It has an initial rocket thrust of 53 million N, sufficient to get a Saturn V
size payload to the moon. The SLS could be used to lift the four man Orion space capsule to the moon.
SLS testing will not be ready unul 2022,



Goal of this Analysis:
Recreate the History & Dynamics of the Apollo Flight to the Moon & Back

Motivated by the upcoming 50th anniversary of the first Apollo moon flight, my goal in this exercise
is to do short review of the basics of the dynamics of space flight and to simulate the basic flight and
orbital dynamics and trajectories of the first manned mission to the moon and back. A crucial element
in this goal is to build "toy" orbital models that interested parties and [ can play with. These models
are implemented in Mathcad 14. A trajectory is a path or curve of an object as it evolves along its path
in time and space. It can be specified by a mathematical model, formula, or a set of points.

This is an Qutline of the Approach We Will Use in the Analytic Part of this Work:

Two Different Perspective:

We will adopt two different perspectives and types of investigations in our study. The first is the
broad viewpoint of the Mission Designer, where we start with a clean sheet and just look at various
solutions to get to the moon and back. We will answer the question of what kinds of trajectories can
get us to the moon and back. The second perspective i1s Historical. This is a more detailed and
segmented. Given the specific rocket burns and conditions that were taken by Apollo 11 to the moon
and back, calculate the resultant accelerations, burn velocities, and positions for each rocket engine
stage and compare them to the historical values.

Mission Designer Perspective:

To accomplish this, we want to develop a methodology that is powerful and general enough to solve a
range of trajectory and AstroDynamics problems. For example: Have the capability of figuring
different types of trajectories to different destinations, such as the Moon or planets, such as Mars.

Determine the Apollo Mission to Moon and Back Trajectories (See Sections I, XVIL, & XVIII)
After rocket burn, a precise trajectory can only be done on an-hour-by-hour basis for a given set of
initial position and velocity conditions at the injection point, using numerical integration of the
equations of motion. These calculations must be informed by data from a Lunar Ephemeris Table,
using a 3-Body and 4-Body gravitational planar point mass system. Because of the complexity of the
calculations, a trial and error method must be used to hone in on the desired trajectory. Approximate
Analytic Algorithms can be used to narrow down the range of possible solution space sets. Once a
candidate trajectory is obtained, optimization techniques can be used to minimize fuel costs or
optimize other parameters of interest, such as length of time of flight.

Ouwr task is to figure out trajectories, that is the actual path through time and space, that get us from
the earth launch point to lunar destination point and then back to the earth splashdown point. We will
affect this solution by solving the equations of motion for earth, moon, sun, and spaceship (4-body)
and then using computer numerical computation methods. We will also investigation a number of
different kinds of trajectories for the Apollo trip to the moon and back. For this task we use the
Mathcad differential equation solver implementing either an Adams/BDF or Radu numerical
integration method.

Computation

The design and in-flight main engine computations for Apollo orbits were done in the mid 1960's using
state of the art IBM 360 mainframe computers. The 360 was capable of doing up to 16.6 million
instructions per second. The larger 360 models could have up to 8 MB of main memory, though main
memory that big was unusual—a large installation might have as little as 256 KB of main storage, but
512 KB, 768 KB or 1024 KB was more common. They cost about $10,000 a month to rent. Today's
microcomputer technology has grown exponentially since then. They are 64 bit multi-core machines,
which run from 3 to 5 billion operations per second, and typically have 8 billion bytes of RAM. My 6
year old Intel i-5 3.1 GHz microcomputer solves and computes a 2D 4-body trajectory problems in a
few seconds. The IBM 360 computed at a rate of about 1 Megaflops, my PC does 14,000 Megaflops,
more than a thousand times faster. The number of transistors has grown by a factor of 10 million.



Historical Perspective:

Calculate Resultant Velocities from Each Burn of the Rocket Engine Stage

1. Given the Saturn IV engine parameters (mass, type of fuel, gas exhaust velocity, thrust control,
thrust angle, azimuth angle, and fuel burn rate), for each of the three stages, we will calculate the
engine's direction and thrust.

2. Given these parameters, we will calculate the tangential and normal components of vehicle
acceleration. From these accelerations, we can then use Newton's Laws to calculate the components
of velocity Av. From this we will get the resultant orbit's altitude and range of travel for the vehicle.

As a check on our calculation, given the vehicle's orbital altitude and the value of the planet's gravita-
tional acceleration, we can calculate the required target velocity to maintain a stable orbit. That is, the
orbit then gives us a way of establishing a target for the simulation of the required vehicle's trajectory
and velocity for the given altitude. This allows us to tweak the parameters to achieve the mission

Historical, Conceptual, and Strategic Background for Space Flight

History of the Laws of Astronomical Motion - Observations by the Ancients
The Scientific Revolution - Observations before the Telescope

The Scientific Revolution - The Telescope - Galileo's Observational Astronomy
Pre Newton - Kepler's Laws of Planetary Motion

History of the Laws of Motion - Newton's Laws and the Invention of Calculus
Some Important Concepts in Space Trajectories:

Mission Success: Reliability Assurance

A New Paradigm: The Apollo Guidance and Navigation System

The influence of the Apollo Program on the Development of the Integrated Circuit Industry
Apollo Re-Entry Navigation, Guidance, Control Solutions/Equations

Orbital Mechanics of Trans-Lunar Injection (TLI) & Free Return Trajectory
What is the Best Rocket Design Strategy? Lunar-Orbit Rendezvous Summary
Description of the Seven Rocket Stages Needed to Get to the Moon and Back
Strategy: Multi-Stage Burns to Lunar-Orbit Rendezvous (LOR)

Orbit Approximations and Pertubations



Let's Review the Framework for the Analysis and Design of Earth Moon Trajector

History of the Laws of Astronomical Motion - Observations by the Ancients

Man has been investigating the motion of heavenly bodies for millennia. Early man needed to predict th
seasons of the year to determine time the for planting of crops. There was also a spiritual fascination
with the heavens. The ancients thought that the heavens were the home of God or the gods. The
Babalonians were the first to keep written recorda and made careful observations of the stars and
planetary orbits. The Greeks were the first to use mathematical models. Since the time of Arnstotle it
was thought that the earth was the center of the universe and the sun, moon, and planets traveled
around it in circular paths called epicycles. This is known as the Geocentric Theory. In 1543, the Polish
astronomer Copernicus, based on his planetary observations, hypothesized that the moon and planets
travel around the sun.

The Scientific Revolution - Observations before the Telescope
During a period of time loosely known as The Scientific Revolution, when modern science came of age

(1550-1700), a few critical thinkers were responsible for transforming our understanding of the cosmos
Tyche Brahe devoted his life to making astronomical observations. He built an instrument called a
spherical astrolabe of large size and great accuracy, and with funding from the Danish government, had
a team of people working on observations. At that time, he made some of the most accurate
observations of the moon, planets, and stars. He created detailed mathematical tables that astronomers
used for centuries. Brahe also correctly established the positions of 1,000 fixed stars. In 1588, he
published his book Introduction to the New Astronomy, which included his observations and his system
of the world.

The Scientific Revolution - Observations with the Telescope

In 1608 the Dutch lens make Hans Lippershay filed a patent for the telescope. Galileo created a higher
power telescope, did detailed astronomical observations which he published, is considered the Father ol
Observational Astronomy, and is often incorrectly credited as being the inventor of the telescope.

Pre Newton - Kepler's Laws of Planetary Motion

A major conceptual breakthrough was the publishing of Kepler's Laws in 1609,

From very detailed observations by Tyche Brahe, Kepler deduced three Laws of planetary motion:

(1) All planets move about the Sun in elliptical orbits, having the Sun as one of the foci.

(2) A radius vector joining any planet to the Sun sweeps out equal areas in equal lengths of time.

(3) The Law of Harmonies: For all planets, the orbital period squared is proportional to distance cubed.

He also derived Kepler's Equation relating the parameters of the ellipse:
M=E -esin(E),

where M is the mean anomaly, E is the eccentric anomaly, and e is the eccentricity. See the last two
pages, Glossary for AstroDynamic and Keplerian Model, for a more detailed explanation. This
equation can be used to find the orbital elements of an ellipse for a body from observations of it made
from the earth. It is a transcendental equation, it has no closed form solution, that is, no formula for E.
It can only be solved by trial and error or numerical iteration. See Section I for one recursion method.
Kepler reasoned that the motion resulted from "a force in the sun” which moved the planets and varied
with the inverse square of distance. The radius r, in a planar Kepler orbit or a conic section, is
described by 3 parameters: a geometrical constant (p), angle to its major axis, v, and eccentricity (e),
which is a measure of its shape. Position r=p/(1 - e cos(v)). Refer to last two pages for more detail.

Kepler's formulation of elliptical orbits was a foundational improvement, but still did not account for al
the variation of orbits, particularly in the orbit of the moon, which varied from a simple elliptical path.
In the 17" century, there were seven other methods of calculation that provided similar accuracy, some
of which also used elliptical orbits. One of the perplexing issues in the 17th century, posed by Hooke
and Halley, was whether orbits are mathematically perfect, but might be indefinitely complex.



History of the Laws of Motion - Newton's Laws and the Invention of Calculus

Since Johannes Kepler first formulated the laws that describe planetary motion, scientists endeavored tc
solve for the equation of motion of the planets. In his honor, this problem has been named The Kepler
Problem.
In 1687 Newton published his Principia, which provided both the Physics and an accurate description
of the trajectories of astronomical bodies, through his three laws of motion and the inverse square
Universal Law of Gravitation. A key principle was the force concept and key definitions of mass,
inertia, and centripetal force. To be able to solve his equations, Newton invented the mathematical tool
of differential calculus, which formulated the rules by which the trajectory paths could then be
determined from his laws. Calculus is essentially the mathematical study of rates of change (in the
same way that geometry is a study of shape and space, and algebra is a study of functions). Equations
for rates of change are called differential equations. the resulting differential equation for Newton's
second law for the determination of trajectories can be seen below and in Section L. Calculus provided
the rules for solving differential equations, but given the rules for solving the differential equations, the
numerical calculation of trajectories is still a very complex mathematical operation.
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Newton's 2nd Law Equation for N Body Problem:

Newton's laws are sufficient (other than the precession in the orbit of Mercury) to the accurately
determine the trajectories of all astronomical bodies including comets and spacecraft. The key is the
ability to account for other perturbing forces, such as the gravity of the sun, planets, and non
gravitational forces such as thrust, drag, solar radiation or rotation. This is the N Body Problem

The philosophical foundations of Newton's Law of Gravity remained under dispute for centuries
because there was no physical mechanism for contact. How was this “action-at-a-distance™ gravitationa
force produced? It took Einstein's General Theory of Relativity to provide a satisfactory answer. There
were also competing vortex theories championed by well respected mathematicians.

The original study of a planet's motion involved just the gravitational influence of the sun. Since it
involves only two bodies, it is called a 2 body problem. Newton's Law of Gravity can be solved exactly
for this simple 2 body problem and results in an equation for two circles revolving around a common
center (center of gravity) resulting in a rotating elliptical orbits. This deviated from motion centered
exactly about the sun or the earth and resulted in wobbles in their orbits.

Development of Classical Mechanics After Newton
The moon's motion as affected by the gravitational pull of both the earth and sun is a 3 body (sun,

earth, and moon) formulation. The center of mass of the earth-moon system revolve around the sun.
Other mathematicians have given algebraic approximate solutions to the Newtonian 3 body orbital
equations. Notable contributions to Classical Mechanics were made by Euler, Lagrange, Laplace,
D'Alembert, Gauss, Jacobi, and Lamaitre. By ignoring the influence of the sun, trajectories can be
calculated for rockets about the moon with a 3 body solution. The orbit of the moon can be described
by six classical orbital parameters. To land on a particular point on the surface of the moon, we must
also consider its period of rotation and its location relative to a launch point from the earth. We can
also get approximate solutions by just patching together different parts of elliptical and conic orbits.

Contemporary Solutions

What is the approach we will use to present our simulation and determine trajectories? We will
develop our work using Mathcad, a computer computational tool that is specifically made to
document and present, enter and manipulate physical and mathematical models and equations, and
then plot the results. Using algorithms, computer software programs can solve complex differential
equations using numerical methods. Mathcad provides a number of numerical differential equation
solvers. Our approach will be to solve Newton's differential equations of motion for the trajectories of
both 3 body (earth, moon, and rocket) and 4 body (sun, earth, moon, and rocket) systems using
generalized numerical differential equation solvers.




Discussion of important concepts in space trajectories: Hohmann Transfer and Lagrange Point
Before we describe our method, it is useful to introduce two trajectory concepts in Orbital Mechanics:
the Hohmann transfer orbit and Lagrange Points. Below is a description of Hohmann Transfer
Orbits from a University of Georgia Math Course.

A Hohmann Transfer is an orbital maneuver that transfers a
satellite or spacecraft from one circular orbit to another. It is the
most fuel efficient way to get from one circular orbit to another
circular orbit. Because the Hohmann Transfer is the most fuel
efficient way to move a spacecraft, it is a fairly slow process
and is used mostly for transferring spacecratt shorter distances.

Hohmann transfer orbit

A Hohmann Transter is half of an elliptical orbit (2) that touches
the circular orbit the spacecraft is currently on (1) and the
circular orbit the spacecraft will end up on (3). It takes two
accelerations to get the original orbit to the destination orbit. To
move from a smaller circular orbit to a larger one the spacecraft
will need to speed up to get onto the elliptical orbit at the perigee
and speed up again at the apogee to get onto the new circular
orbit. To move from a larger circular orbit to a smaller one, the
processes are reversed.

http://jwilson. coe.uga.edu/EMAT6680Fal5/Bacon/hohmanntran
sfers. html

A Lagrange point 1s a location in space where the combined gravitational forces of two large bodies,
such as Earth and the sun or Earth and the moon, equal the centrifugal force felt by a much smaller
third body. The interaction of the forces creates a point of equilibrium where a spacecraft may be
"parked” to make observations. There are five Lagrange points around major bodies such as a planet or
a star. Three of them lie along the line connecting the two large bodies. In the Earth-moon system, for
example, the first point, L1, lies about 5/6th of the distance between the Earth and the moon, at about 1
million miles from Earth. The gravitational pull of the earth balances that of the moon at L1. See the
illustration of lines of equal gravitational force below.




A New Paradigm: Apollo Integrated CKkt, (IC) Based Guidance Computer (AGC)

Although the main computation was done with mainframes, a computer in the spacecraft was still
justified. There was still a 2.5 s time delay in the signal path from earth to the moon and back. Lunar
orbit insertion took place at the backside of the moon, blocking any signal path. Trajectory calculations
for landing would require an autonomous on board computer. There were also concerns about
malicous signal jamming and a desire to prepare for longer planetary trips and possible simultaneous
multiple missions. Also, the later decision to use the Lunar Rendezvous method over Direct Ascent
proved the wisdom of this decision. Lunar Rendezvous would not be possible without the AGC.

The first contract award by NASA was for the development of the Inertial Guidance System and
digital Apollo Guidance Computer (AGC) to the Massachusetts Institute of Technology (MIT)
Instrumentation Lab. MIT had developed the navigation systems since the late 1950s for the
aerospace programs such as Polaris. At that time the first generation of computers used vacuum tubes
and took up a whole room. The AGC was one of the first third generation computer, that is, it used
Integrated Circuits for its logic. However, because of the long development cycle of Aerospace
programs and the commitment to using only proven parts with reliability established by extensive
component testing, environmental testing, component stress de-rating, and gualification, by the time
of the Apollo 11 moon flight in 1969, considering its cost and size, it was far less powerful than a
DEC PDP-11 (Programmed Data Processor) design, which was in popular use at that time.

The computer was based on digital rather than analog technology to provide sufficient accuracy. The
final production version of the AGC used Fairchild Micrologic Resistor-Transistor-Logic (RTL)
Integrated Circuits, consisting of three input NOR gates, packaged into flatpaks. This well established
NOR gate was the basic building block of the AGC. Fairchild and Texas Instruments shared the patent
rights for the invention of the Integrated Circuit. At one time, the AGC used 60% of all the I1Cs made
in the US. The flatpaks were assembled into modules called "Logic Sticks".

The AGC4 used four 16 bit registers, a 15-bit wordlength + 1-bit parity, 2048 word RAM
(magnetic-core memory), 38,912 words of bank switched ROM (high density, low power, magnetic
core rope memory ), 5600 logic gates, and ran at a basic machine cycle of 2.048 MHz. It had an add
cycle ime of 23.4 ws and double precision add and multiply subroutine times of 235 and 780 ps.

It used 34 instructions for 45 different programs with 80 different "verbs" and 90 "nouns.” The AGC
had a real-time, multiprogramming, priority scheduled, interrupt driven, operating
system. It had logic alarms and employed double word capability for accuracy.

It had 8 I/O ports (Inertial Measurement Unit, Display, 2 radar, hand controller, telemetry, engine
command, and RCS). It occupied 2 cubic feet, was hermetically sealing to prevent corrosion, weighed
70 Ibs, and consumed 50W of power. It had a keyboard for data input and used a digital
electroluminescent display (DSKY) to provide the human interface. The astronauts said that they
preferred analog meters for readout, but the digital display provided a far broader range of
information.

The power was generated from hydrogen/oxygen fuel cells. There were three fuel cells whose output
was 27 to 31 volts. Normal power output for each power plant is 563 to 1420 watts, with a maximum
of 2300 watts. Each cell weighed about 200} |bs. As a side benefit, the fuel cells generated about 20
gallons of water per day, used as drinking water by the crew.



The influence of the Apollo Program on the Development of 1C Industry & Information Tech
50 Years of Microprocessor Development and the Death of Moore's Law

The development of NASA's Apollo technology has changed history. The Apollo lunar program made &
staggering contribution to various aspects of high tech development, especially ICs and computers. It
costs about $10,000 a pound to launch a vehicle to lower Earth orbit. This put great value on ICs
which were far more compact, weighed less, and used less power that the discrete transistors used on
earlier space computers, such as for the Polaris. And, as noted above, they required fewer connections
and thus were more reliable.

However, in the early 1960s they ICs were far more expensive, costing about 51,000 each & were only
available in limited quantities. In the summer of 1963, 60% of the total US output of ICs were being
used in Apollo prototype construction. Product development improvements in the integrated circuit
industry are based on the concept of the learning curve. The learning curve relates reduction in
manufacturing cost to cumulative production volume. One form of this is Moore's Law. In 1965
Gordon Moore of Intel stated that complexity for minimum component cost will double/yr. In 1975 he
revised it to state that there 1s a doubling of the number of transistors in an IC every 2 years. By 2012,
Intel had changed this to every 2 1/2 years. From the curve below it can be seen that improvements in
clock rate, power device, and single thread performance stopped in 2003. Traditional Dennard scaling
based on reduced voltage and feature size came to an end. The number of transistors continued to
increase by using new types of connect and gate materials and the introduction of the FinFet transistor.

It was this early Apollo purchase of a volume of very expensive ICs that helped jump start the
integrated circuit and microcomputer industry into further development, production, and marketing.
Military purchases initiated the beginning of Moore's Law in 1965. In 1970, Intel introduced the first
microprocessor (WWP), the Intel 4044, The growth of Moore's Law is now measured in terms of pP
transistor count and performance improvements. The increased transistor count comes by adding
more processing cores for types of applications that can make use of multiple threads or parallelism.

The impact of IC growth on our life is hard to overestimate. From computers to smart phones, the
Internet, to TVs, the growth of electronics technology, fueled by advances in ICs, has been
phenomenal. The impact of these developments has been so profound that it is now often taken for
granted: consumers have come to expect increasingly sophisticated electronics products at ever lower
prices, such as new Apple iPhone models every year or so. It has been predicted because of both
physical limits and increased development and fabrication costs that Moore's Law will come to an end
in the 2020s. It is expected that this will have a profound impact the world's continuing technical
innovation and the growth of the world's economy. However, GPU performance and memory storage
continue to increase.

50 Years of Microprocessor Development
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Apollo Guidance and Navigation System
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Mission Success: Reliability Assurance

Despite the fact that Russia was ahead of the US in space technology in the early
1960's, the US was the first to get a man on the moon. One of the reasons the US was
able to do this was our understanding of the importance of reliability. The computer had
to endure the vehicle launch, vibration, radiation, extreme temperatures, and vacuum of
space. We incorporated reliability techniques of failure mode and effect analysis, the
component failure analysis and closed failure reporting and corrective action scheme,
the use of proven parts and techniques, the pursuit of simplicity, component de-rating,
the elaborate deployment of redundancies, individual component qualification,
component lot qualifications, testing of components, environmental testing of
components and subsystems under simulated environments: such as vacuum, vibration,
and extreme temperature, and the systematic implementation of design reviews.

Probabilistic Reliability Program: Functional diagrams representing the relationships
between these components and subsystems and component test data are then translated
into statistical failure rate and reliability terms using Statistical Models to insure that
Reliability goals are achievable with the chosen design approach.

The AGC Reliability Requirement was a mission success probability of 98.6%. Let's
examine three specific failure modes exhibited by the AGC ICs: 1). open bonds caused
by a gold rich, aluminum-gold intermetallic between the gold wires and the aluminum
bond pads called "purple plague”, 2). shorting caused by loose conducting particles, anc
3). electrical leakage of the isolation region of bond pads cause by a defective isolation
diffusion masking operation. The photomicrographs on the following page show an
example on an Aerospace [latpak Logic IC with a leaky bond pad on which I did a
failure analysis back in the late 1960s. The small arrows point to the leaky bond pad and
the area of the small mask defect.
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Apollo Re-Entry Navigation, Guidance, Control Solutions/Equations
The whole purpose of a Navigation, Guidance and Control System is to answer three questions:
1. Where am I?

2. Where am I going?
3. What do I have to do to get there?

1. Where am 1?

The Inertial Measurement Unit (IMU) is a three-degree-of freedom gimbaled platform isolating
three single-degree-of-freedom gyros and three single-axis accelerometers from the spacecraft
attitude angle. Its purpose is to provide a stable platform for measurement of attitude and
acceleration and to provide i1solation from its case by three orthogonal (x, y, z) gimbals.
Accelerometers are small mechanical devices that respond to accelerations of the vehicle. Each
accel erometer measures acceleration in a single direction; therefore the three accelerometers are
used to take measurements of the complete motion of the vehicle in space.

The orientation of the platform and the direction of the sensitive axes of the accelerometers are held
inertially, fixed by the gyro error signals, which feed the platform drive servos. The orientation is
held to a fixed position. The attitude is then determined by alignment to the stars. The IMU
provides the computer with information of spacecraft attitude by readout of the IMU gimbal as
shown in the illustration below:

IMU Gimbal Assemb
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MU Platform, Guidance Coordinates
LM Body Spacecraft Coordinates
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2. Where am I going?

Apollo Guidance and Control Solutions, and Rendezvous Equations

Targeting is the process of determining the target coordinates on a rotating earth, and the location
and rotation of the vehicle with respect to these coordinates. This information is mandatory to the
operation of the closed-loop guidance system and is calculated at every pass through the guidance
logic. At a pre-selected value of velocity, the targeting will switch to relative coordinates. The
control system controlled thrust and vehicle attitude.

3. What do I have to do to get there?
Trajectory Model: Quartic Polynomial, with 4 spatial derivatives of motion
Reference: Apollo Lunar-Descent-Guidance, MIT, June 1971

The parameters which are calculated in this phase are: (1) the predicted target vector, which
accounted for a predicted earth rotation based on an estimated flight time, (2) the range-to-go,
which is simply the arc cosine or the vector dot product of the position vector (time derivative of
the position) of the vehicle and the predicted target vector, and (3) the lateral angle, which
represented the angle between the target vector and a radius vector formed by the intersection of
the calculating plane and a plane which contains the target vector and its perpendicular to the
calculating plane. The angle is used in the lateral logic to control the direction of the roll command.
It is convenient to think of the reference trajectory as evolving backwards in time from the target
point, with the time variable T reaching zero at the target point and negative prior to that point.
The situation is dynamic, the target point keeps changing.

Thus the target-referenced time (T) is to be distinguished from clock-time (t). Because guidance
gains would become unbounded, the target point is never reached. Instead, a guided phase is
terminated at a negative time T and the succeeding phase is started. Both the terminus and the
target point lie on the reference trajectory, but the target point lies beyond the portion that 1s
actually flown. In terms of a vector polynomial function of target-referenced time, we wish to
define a reference trajectory that satisfies a two-point boundary value problem with a total of five
degrees of freedom for each of the 3 space dimensions. This number of degrees of freedom is
required in order to constrain terminal thrust in the Break Phase Program (P63) and to shape the
trajectory design in the Approach Phase Program (P64) for targeting. A quartic polynomial is
the minimum order with which five constraints on the reference trajectory can be satisfied. With
the reference trajectory evolving backwards in time from the target point, it can be defined as:

. 2 3
5 ATGTS ITGT STGT
Control 'iulutm:‘i RG = R_RTG + VIG-T + P JIGT H

Rendezvous Equation: 2 G 34

where

RG is the current position vector on the reference trajectory in guidance coordinates

at the negative time T.

RTG isthe target position, and

VTG, ATG, JTG, and STG are the four target position time derivatives:

velocity, acceleration, jerk, and snap, respectively.

Saturn V Flight Control
The 5-IC stage was powered by five Rocketdyne F-1 engines arrayed in a quincunx (five units,
with four arranged in a square, and the fifth in the center). The center engine was held in a fixed
position, while the four outer engines could be hydraulically turned (gimbaled) to steer the rocket.
The final velocity is determined by the rocket's weight, thrust, burn time, attitude, and for the
Service Module, pulse rate. IBM supplied the guidance computer. It occupied a 3-foot-high section
of the 360-foot-long rocket, sitting on top of the third stage.



Orbital Mechanics of Trans-Lunar Injection (TLI) & Free Return Trajectory
The Trans-Lunar Injection (TLI) was a maneuver used to change the trajectory of the spacecraft from
the circular earth parking orbit to a highly eccentric elliptical orbit. An ellipse is an oval shape. It thus
has two radii of different lengths. The longer radius is called the apogee. The shorter is the perigee.

The end of the Stage 3 burn (3B) moves the spacecraft to the earth orbit apogee (farthest point),
which coincides with the radius of the moon's orbit. The burn was then critically timed so that the
spacecraft neared its orbital elliptical apogee as it approached the moon. The spacecraft was then
captured by the moon's gravity and then swung around into a figure 8 orbit around the moon. Apollo 8

did not land. Tt was carried back to earth in a Free Return Trajectory. Apollo 11 did a retro burn to
slow down into an orbit around the moon.

The Basic Idea
Start with a parking
orbit around the earth,
then do a TLI rocket
burn to increase the
earth apogee (farthest)
orbit of the earth to
intersect the apogee of
the moon. Circularize
the moon orbit, then
do a retro burn to
descend to the moon.

Translunar
injction

Moon at launch

Apollo TLI Spacecraft - Command/Service Module (CSM)
On Top, the Launch Escape System
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Orbital Mechanics of the Free Return Trajectory (FRT) - See Section | Below

In Section I, we solve for the 3 and 4 body Gravitational Equations of Motion for the Free Return
Trajectory ( FRT), that 15, an orbit such that a Trans-Lunar or Lunar Orbit rocket bum 15 not required for
return to earth. It uses the pull of the moon's and Earth's gravity. This provides for a way to allow a
return without the need for propulsion, in the event of a mission failure. This method was an option for
Apollo 8, Apollo 10, and Apollo 11 missions and was the emergency method used for return in the
aborted Apollo 13 lunar mission. For a lunar landing, a mid-course correction was then made to change
from the Free Return Trajectory going to earth to a Trans-Lunar Injection for lunar orbiting and descent.

For simplicity, we will consider only the gravity of the earth, moon, and CSM and ignore the pull of the
sun on the CSM. Now the earth moves in its equatorial plane, while the moon's orbit is inclined to the
Equatorial plane, between about 18 to 29 degrees. The moon's orbital plane crosses only twice a

month. We will consider only a 3 body planar single peoint mass type FET, that 15, moon 1510 the same
plane as the earth.



What was the Best Vehicle Strategy to Get to the Moon and Back?
From NASA Fact Sheet: hups:/www nasagov/centers/langley/mew s/factsheets/Rendezvouns himl

NASA gave senious consideration to three vehicle strategies: Initially, direct ascent; then, Earth-orbat
rendezvous (EOR), and, finally, a dark horse candidate, lunar-orbit rendez vous (LOR).

Direct ascent. This was basically the method that had been pictured in science fiction novels and
Hollywood movies. A massive rocket the size of a battleship would be fired directly to the moon, land
and then blast off for home directly from the lunar surface. The trip would be like that of a chartered
bus, moving from point A to point B and back to A again in one brute of a vehicle.

NASA realized that any single big rocket had to carry and lift all the fuel necessary for leaving the
Earth's gravity, braking against the moon's gravity as well as leaving it, and braking back down into the
Earth's gravity again. This clearly was not a realistic option, especially if the mission was to be
accomplished anywhere close to President Kennedy's timetable. The development time of a rocket

that enormous (about twice the thrust of Saturn V) would be far too long, and the expense would be
€NOTMOuS.

Earth-orbit rendezvous (EOR). The main idea of EOR was to launch two spacecraft into space,
independently, using two independent Saturn rockets. This would mean that there would be a
rendezvous and docking in Earth orbit, followed by assembly, fueling, and detaching of a lunar mission
vehicle from the joined modules. This bolstered ship would then proceed in direct flight mode to the
moon, followed by direct flight back to Earth orbit. Advantage: much less weight.

Lunar-orbit rendezvous (LOR) - dark horse: Injection Trajectory to Moon (See trajectory
illustration on previous page)

The basic premise of LOR was to fire an assembly of three spacecraft into Earth orbit on top of a
single powerful (three-stage) rocket. The lunar orbit rendezvous concept that, in the opinion of many
historians, was chief among the reasons why the U.5., in less than a decade, managed humankind's
first extraterrestrial excursions. See Graph of Saturn V Weight Loss during Flight in Section XIIL

This assembly included: One, a mother ship, or command module; two, a service module containing
the fuel cells, attitude control system and main propulsion system, and three, a small lunar lander or
excursion module. Once in Earth orbit, the last stage of the rocket would fire, boosting the Apollo
spacecraft with its crew of three men into its flight Trans-Lunar Injection (TLI} trajectory to the
moon. Reaching lunar orbit, two of the crew members would don space suits and climb into the Lunar
Excursion Module (LEM), detach it from the mother ship, and take it down to the lunar surface. The
third crew member would remain in the command module, maintaining a lonely vigil in lunar orbit. If
all went well, the top half of the LEM would rocket back up, using the ascent engine provided, and
re-dock with the command module. The lander would then be discarded into the vast darkness of
space or crashed onto the moon (as was done in later Apollo missions for seismic experiments), and
the three astronauts in their command ship would head for home.

When Langley engineers first suggested the concept of lunar-orbit rendezvous, NASA had rejected it
out of hand for being too complicated and risky. However, LOR enjoyed several advantages

over the other two options. It required less fuel, only half the payload, and less brand new technology
than the other methods; it did not require the monstrous Nova recket; and it called for enly one launch
from Earth whereas EOR required two. Only the small, lightweight lunar module, not the entire
spacecratt, would have to land on the moon. This was perhaps LOR's major advantage. Because
the lander was to be discarded after use and would not need return to Earth, NASA could tailor the
design of the LEM for maneuvering flight in the lunar environment and for a soft lunar landing.

NASA also incorporated a Free Return Trajectory (FRT) option into their flight plans. This is a
trajectory where if a lunar landing is aborted (such as the Apollo 13 mission), the initial FRT
programmed into the TLL can then safely return the spacecraft to earth orbit without any additional
propulsive engine burns.



Description of the Seven Saturn V Rocket Stages Needed to Get to the Moon

The rocket that carried astronauts to the moon was the Saturn V (referred to as the Saturn Five). It
was 363 feet tall, weighed 6.2 million pounds, and consisted of three stages. Stage 1 burped 3 tons of
fuel each second. Each stage played a different role in launching Apollo on a path to the moon. The
vehicle design strategy used a combination of components of different rockets, and it is called “Lunar
Orbit Rendezvous.” The components of the ship were discarded, one by one, and then the remaining
vessel became the rocket that sent the astronauts into space.

The actual Apollo lunar spacecratt was stacked on top of the Saturn V. It was made up of three
parts: 1) the lunar excursion module (LEM), the component that would eventually land on the lunar
surface; 2) The service module (SM) which had propulsion systems for course corrections and
enterning and escaping the moen's and earth's orbats; and 3) the command module (CM), the
compartment occupied by the three astronauts for most of the mission. Last but not least, is the
stage located at the very top, the Launch Abort/Escape Rocket System which was designed to pull
the command module away from the rocket in the event of problems during launch. Together, all
these pieces made up the Saturn V rocket and Apollo 11 spacecraft.

It's the way they were functionally connected and then jettisoned, that made the moon landing
happen. The Saturn V's first stage launched the Apollo spacecraft, which carried the craft 42 miles
above the earth and reached a speed of about 6,000} miles per hour. The first Saturn V stage then
detached. Once the Saturn V second stage kicked in, the now needless launch escape system was
jettisoned, and the second stage propelled the spacecraft even farther and faster into space.

After second stage detached, the third stage of the rocket fired briefly to knock Apollo into a parking
orbit, 103 miles above the Earth's surface. Here final checks were made and the Saturn V third

stage fired again to set Apollo on its course to the moon, in a move called the Trans-Lunar Injection
(TLI). Once the spacecraft propelled itself away from Earth, the Saturn V's job was done. The
astronauts then performed a mid-flight maneuver to reconfigure the ship. The crew could now
access the lunar module which had been stored in a protective compartment during launch. To do
this, the command service module detached, flipped 180 degrees, and docked with the lunar module.
After this maneuver, they jettisoned the last and now useless third stage of the Saturn V rocket.

This whole high-stakes launch process only took about three and a half hours. Thus the payload
were the combined Apollo CM, SM, and LEM spacecraft (CSM). For the next 77 hours or 3.2 days

for the Time of Flight (TOF), Apollo coasted through space in the TLI orbit until it finally reached
its target. See Section I It was pulled into orbit by the moon's gravity. This is where the crew split
up. Armstrong and Aldrin transferred to the lunar module named Eagle and slowly descended toward
the lunar surface, while Collins continued to circle the moon in the command module called
Columbia Now here comes another tricky part: landing on the moon.  To make this historic
moment happen, Eagle turned around and used its engine to slow its speed, and ultimately touched
down on the lunar surface.

The second phase occurred after about 21 %2 hours later. After the moon walk, Eagle performed the
first vehicular launch from a celestial body that wasn't the Earth. Then, leaving its landing gear
behind, timing its ascent with Columbia's path in lunar orbit, it rejoined the CM spacecraft. Once
Collins and Aldrins transferred back into the command module, the LEM lunar module was no longer
needed and it was left behind on the moon. Just like before, Apollo needed to break out of orbit.
This maneuver was called the Trans-Earth Injection. It began the two 1/2 day journey home. Upon
approaching its entry point into Earth's atmosphere and no longer needing its propulsion engines,
Apollo jettisoned the service module and prepared for re-entry. Protected by the now exposed heat
shield on the bottom of the command module, Apollo blazed across the heavens, coming back to
earth at 25,000 miles per hour. After being slowed by the earth's atmospheric drag, the parachutes
deployed, and Columbia splashed down safely into the Pacific Ocean. What started out as a 3,000
ton behemoth of rocket fuel and freight, was reduced to a small command module floating in the
ocean, carrying three astronauts and rock samples collected from the surface of the Moon.



Strategy: Multi-Stage Burns to Lunar-Orbit Rendezvous (LOR)

Gravity Turns - Minimum Energy Orbit

Motion in an orbit is circular. Orbital launch requires that the flight end with a roughly horizontal or
tangential velocity at orbital speed. One useful maneuver to accomplish this transition is called the
gravity turn. In this maneuver, the earth's gravity acts to turn the trajectory of the rocket towards the
horizontal. If the attraction from the Moon was not a factor and the purpose of the mission was for
Saturn V to reach the escape velocity, the rocket could have blasted off in a vertical direction from the
Earth or simply accelerated along the tangential direction or motion. Going in a vertical direction
would require the rocket to accelerate from zero velocity to the escape velocity. However, going up to
the escape velocity in the radial direction required much less energy.

First Stage - Saturn Stage S-1C
When Saturn V blasted off from the Earth, the first stage burned for 2.5 minutes, lifting the rocket to
an altitude of 68 km (42 miles) and a speed of 2,76 km/s (6,164 mph) into an initial Earth-orbit of 114

by 116 miles. This orbital speed was much less than the escape velocity.

Second Stage - Saturn Stage S-11

After the 5-IC stage separated from the Saturn V rocket, the S-II second stage burned for 6 minutes.
This propelled the rocket to an altitude of 176 km (109 miles) and a speed of 6.995km/s (25,182km/h
or 15,647mph). This speed is close to the orbital velocity for that altitude.

Third Stage - Saturn Stage S-IVB Burn #1 - Earth Parking Orbit

After the 5-IVB stage separated from the rocket, the third stage burned for about 2.5 minutes. It then
cut off, and the Apollo 11 went into a "parking orbit" at an altitude of 191.2 km (118.8 miles). Its
velocity was 7.791 km/s (28,048 km/h or 17,432mph). It made several orbits around earth.

Third Stage - Saturn Stage S-IVB Burn #2 - Trans-Lunar Injection of CSM

After several orbits, the rocket's engines re-ignited, and it blasted off for what they call Trans-Lunar
Injection. According to NASA, Saturn V reached an altitude of 334.436 km (208 miles) and an escape
velocity of 10,423 km/s, at which time the engines were shut down. This velocity was less than the
escape velocity for that altitude, but it was sufficient to take Apollo 11 to the Moon. The gravitational
attraction from the Moon facilitated its motion.

Two Mid-Course Trajectory Corrections by the Service Module (SM) SPS Engine

Free-Return-Trajectory, a Contingency Option - See Section I

This is a special kind of Trans-Lunar-Injection trajectory (ballistic) which, after only the initial first
burn, would allow Apollo to flyby the moon and return to earth without any additional burns using only
the gravity of moon and earth (the sun also has a large gravitational influence). This trajectory is a
contingency option, should any problems develop with the Mission, such as the Apollo 13

Orbit the Moon, and Descent to Surface of the Moon

After 77 hours attain lunar oribt, after 101 hours, 36 minutes, when the LM was behind the moon on
its 13th orbit, the Lunar Excursion Module descent engine fired for 30 seconds to provide retrograde
thrust and commence descent orbit insertion, changing to an orbit of 9 by 67 miles, on a trajectory that
was virtually identical to that flown by Apollo10. An orbit is easier to target than a fixed spot on moon.

Ascent from the Moon to Moon Orbit
Trans-Earth Orbit and Mid-Course Correction by SM SPS Engine

Re-Eniry: Atmospheric Braking with Command Module
Just before re-entry the Service Module is jettisoned leaving only the Command Module, CM.

Deploy Parachutes - CM Splash Down After 8 Days



Outline of the Stages of the Flight Analysis and Simulation:

Sections I to XXVI

This is the analytic part of this paper in which we work out trajectories from first
principles and analyze the different rocket burns/stages of the mission. Section I starts
out with a historical treatment in which we use Kepler's Laws and his Equation to find
an approximate trajectory based on two gravitational bodies: First, the earth and the
spacecraft and then the moon and the spacecraft. Each divides the space and considers
only the nearest sphere of influence, that is, either the earth or moon.

Analysis: Trajectory Determinations

Sections [A, IB, and IC use Newton's Laws to develop more accurate 3 Body (earth,
moon, satelilite) and then 4 Body (sun, earth, moon, satelilite) models for trajectories
from first principles. We also solve for trajectories using Newton's fundamental
approach in Sections XV - Earth to Moon Trajectory and XXV - Moon to Earth
Splashdown.

Simulations: Rocket Burns/Stages

Except as noted above, from Section II and onward, we consider only the particular
rocket burns and portions of trajectories, associated with one of the spacecraft engine
stages, from the earth to the moon, and then back to earth splashdown.

This Analysis Uses Mathcad 14.0 Software

to Document this Presentation, Solve Equations,
Perform Computations, and Plot the Results.
Mathcad 14 #*.xmed source files are available:
http://'www. VX Physics.com/Space % 20Program/



Outline of the Analysis & Simulation of Stages

Finding the Earth-Moon Free Return Trajectory - a Contingency Option
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Simple Lunar Trajectories: Kepler's Elliptical Orbits and The Patched Conic Model

Newton's 2nd Law: Simulation of 3 and 4-Bodv Free-Return-Trajectory
Trajectory Model: 3 Body, Earth, Moon, Spacecraft Planar Point Mass, Earth Center
Trajectory Model: 4 Body, Sun, Earth, Moon, Spacecraft Planar Point Mass, Earth Center
Trajectory Model: 4 Body, Sun, Earth, Moon, Spacecraft Planar Point Mass, Sun Center
1. Moon's Gravity Turned Off -Trajectory does not return to earth
2. Moon's Gravity Turned On -Trajectory returns to earth

The Saturn I'V Rocket - Three Stage Burns to the Moon
Table of Saturn IV Engine Parameters

Create a Model for Vehicle Pitch Angle

Simulate Atmospheric Drag

Stage 1, 5-IC - : Simulation Equations for Pitch, Acceleration, Velocity, and Distance
Graph Velocity, Vertical thrust, Tup. Check that Tup > 1 g as Pitch is reduced
Calculate Stage 1 Altitude and Range

Stage 2, 5-11 Burn: Velocity Calculation - Assuming 20° Ascent Angle & ~ (1.35g
Calculate the Required Velocity to go into Orbit at an Altitude of 191 km

Stage 3, 5-IVB Burn: Earth Parking Orbit Velocity Calculation

Trans-Lunar Insertion - Trip to Moon
Orbital Mechanics: Estimate Velocity Required for Trans-Lunar Injection
Stage 3, 5-IVB Burn: Trans-Lunar Injection to the Moon Final Velocity Calculation
Graph Velocity and Acceleration (gs) Profile of Flight

Command/Service Module (CSM) Trajectory to Moon and Lunar Orbit

XIV.
XV.

XVL

Service Module Engine: Lunar and Earth Orbits & Lunar Module Engine
Trajectory Sim of Apollo Command/Service Module (CSM) from Earth to Moon

Descent to the Surface of the Moon
Simulation of Descent from Orbit to Moon Surface, Lunar Orbit Descent, LOD

EVIL Simulation of Ascent from Moon Surface to Orbit, Lunar Orbit Ascent, LOA

Trans-Earth Injection and Mid-Course Correction

XVIIL Command Service Module "Columbia” Trans-Earth Injection

XIX.

XX.

XXL

Trans-Earth Coast, Mid-Course Correction, and CM/LEM Separation

Atmospheric Breaking/Drag and Heat Dissipation Considerations
Re-Entry into the Earth's Atmosphere
Strategies for Dissipation of Heat from Re-entry Atmospheric Braking

XXII. Simulate Drag Force or Drag Coefficient on CM in Five Different Ways
XXIIL Apollo Re- Entry: Velocity, Altitude, & Cd Flight Data versus time
XXIV. Simulation of Atmospheric Braking: Command Module Acceleration and Velocity

Trajectory to Earth, to Moon, and Back

XXV, Trajectory Simulation of Apollo Command Module from Moon to Earth Splashdown
XXVI. Splashdown: Parachute Terminal Velocity

AstroDyvnamic and Keplerian Model Terms and Definitions




Review: Qutline of the Stages of the Flight Analvsis and Simulation
Sections I to XX VI

As noted previously, this is the analytic part of this paper in which we work out trajectories from first
principles for a "toy" model and analyze the different rocket burns/stages of the mission. Section |
starts out with a historical treatment in which we use Kepler's Laws and his Equation to find an
approximate trajectory based on two gravitational bodies: First, the earth and the spacecraft and then
the moon and the spacecraft. Each divides the space and considers only the nearest sphere of
influence, that is, either the earth or moon.

Analysis: Trajectory Determinations
Sections [A, [B, and IC use Newton's Laws to develop more accurate 3 Body (earth, moon, satellite)
from first principles and then 4 Body (sun, earth, moon, satellite) models for trajectories. We also
solve for trajectories using Newton's fundamental approach in Sections XV - Earth to Moon
Trajectory and XXV - Moon to Earth Splashdown.

Simulations: Rocket Burns/Stages
Except as noted above, from Section II and onward, we consider only the particular rocket burns and
portions of trajectories, associated with one of the spacecraft engine stages, from the earth to the
moon, and then back to earth splashdown.

Error Analysis: Trajectory Approximations - Perturbations
All celestial bodies of the Solar System follow in first approximation a Kepler orbit around a central
body. Deviations from a Kepler orbit are called perturbations. In ancient times, these were a mystery.

There are a number of simplifying approximations that are used in the following work. In the 3 Body
Approximation that follows we account for the fact that the moon travels in an orbit around the earth
and that the spacecraft travels in an orbit toward the moon. In the 4 Body Approximation we also
account for the gravitational influence of the sun and the orbital velocity of the earth around the sun.
But there are other motions that we do not consider. In our work, we analyze these motions in only
two dimensions, that is, that they move in orbits that are in the same plane. To use a building as an
example, we assume they are on the same floor. But a real building has a third dimension: height.

In our work, we assume that the bodies move in the same orbital plane with a fixed velocity or
period. The moon is generally not in the same plane as the earth, but the plane of the moon's orbit

tilts from above and below by 5.1 to the earth's orbital plane with a period of 8.8 years. This motion
accounts for a solar eclipse when the moon's plane aligns with the solar plane and blocks sunlight.
The moon also tilts along its own axis, analogous to the cause of the earth's seasons. There are a
number of other variations in the motions and periods of the moon and other astronimical bodies
which are also not considered here, such as precession and libration of the moon's orbit.

We also assume that the astronomical bodies are point masses. But the earth and moon are slightly
flattened. This causes an error in the pull of gravity close to the earth of about 1%. It has a
significant effect on the motion of satellites around the earth. Even the earth's tidal bulge and solar
radiation pressure can influence spacecraft over long periods of time. We also ignored the latitude of
the launch point from earth. For interplanetary motion, the gravitational effects of the large planets
such as Jupiter and Saturn or other nearby astronomical bodies can be significant.

One other very significant factor is calculation errors. Only so many number of decimal places of
accuracy are used for calculations. Thus there are cumulative round off errors. Different numerical
software methods also have different kinds of errors. Different types of equation solvers give
different types of solutions. For example, each has its own unique kind of oscillations or variations.

Another big assumption we implicitly make is that there is a solution to the problem. There are some
cases, for example at Lagrange Points, where there may be no solutions. Points where the
gravitational forces cancel out. The orbits are potentially unstable.



I. Simple Lunar Trajectories: Kepler's Elliptical Model (Planar Point Mass
This Section on Kepler is shown for historical interest. Newton's Dynamics is used in all the following Sections

Kepler's E Model (Planar Point Mass 2 Body): See the Glossary and Figures in last two pages of llhis Stujj,v
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The Patched Conic Section Approximation for Finding a Lunar Trajectory

The Patched Conic Method is an Approximation for finding a trajectory by dividing space between the
sphere of influence (SOT) of the earth, Lunar Earth Orbit (LEO) and the SOI region of the moon.

Mooh's sphere of
When the spacecraft is within the sphere of irfluence
influence of the moon, only the gravitational force e
between the spacecraft and the moon is R .
considered, otherwise the gravitational force ’ v
between the spacecraft and the earth is used. This
reduces a complicated n-body problem to multiple
two-body problems, for which the solutions are
the well-known conic sections of the Kepler
orbits. Below is an example composite solution.

See for Example:
Optimal Two-Impulse Trajectories with
Moderate Flight Time for Earth-Moon Missions,
Sandro da Silva Fernandes
Mathematical Problems in Engineering
Mol 2012, Article ID 971983,

or
Bate, B. B.. D. D. Mueller, and J. E. White, Moon
Fundamentals of Asirodynamics | Y e e L T A '@' at time £

Earth

Rather than dealing with large powers of 10, we can use Astronomical Units, for distance, velocity, time: AU, VU, TU.
Where AL is the mean distance of the earth to the sun and DU is the radius of the earth. TU is the time unit. Then the
velocity unit, (VU) is egual to DU/TU.

km
DU = 6378.145km AU = 1.495. ]ﬂﬂkm kmps ;= = V1 := 7.005368kmps TU := 806.8s D:=dy
5

Laplace's Equation for Moon's Sphere of Influence: R b [mm
sif =

4
this is about 1/6 of the distance, D, to the moon | m_EJ Ry := 66300km Ry = 10.395DU

The conic patched problem for finding a trajectory can be stated as follows:

Given: Initial rocket launch conditions in the earth’s s phere of Influence, that is, initial position, velocity, flight path
angle, and phase angle: rg. Vg bg. and yg .

The three quntities Fg. Vg $g will give us initial energy and anglular momentum.

Find: Arrival conditions at moon's Sphere of Influence: ry, vy ¢y, Ay. Fgs Vig By, and A,

The problem with assigning these initial points is that they may not give a satisfactory solution to match the
arrival conditions. Our strategy is to use the arrival ange 44 to the moon's SO as one of the independent condition

Given _the Jinitial conditions and one arrival condition as our independent variables:
These will move us into the radius of the moon's sphere of influence. Some trial and error may still be reguired



EXAMPLE: See Bate, R. R, D. D. Mueller, and J. E. White, Fundamentals of Astrody nam s

Solution: Select the Apollo 11 Flight Conditions for initial conditions: rg, v, ¢y and A,_

Given: i, = DU+ 334km vy:= 10.6kmps = Odeg  Areasonable angle to arrive at moon X = 30deg
Eind: ry, vy, ¢4. vy (the last symbol, y, is the Greek letter gamma, the Arrival Phase Angle at the Moon)

2
- DU~
Initial Energy and Angular Momentum are Emrgy[vﬂ,rﬂ} - 0.011-vU? hy = h{vg.1g ) = ].44]-ﬁ

D= 60268DU By the Law of Cosines: rj(x,) = JD2+ Ry* - 2D-Rgcos(X)) 1 = 1y (N) = 51.529.DU

2

. DU
From Law of Conservation of Energy  Ey := Energy| vy, rp) Eg = 0011 — hy = hy
and Momentum: '

|.'I]
1.-'][1']} = ||2-IE{]+% vl = vy(rl) = 0.128-VU ] -= 0.1296VU ity = aﬂns[[]_ﬂ] f = T77.542-deg

In order to calculate the Time of Flight, TOF, to the moon's SOI, we need to Find:

p, a, e, E, and E, for the Geocentric Trajectory.

h(]2

K , p
=—=2075DU g=——- = 1-= = (.977 =wip.rl, = 209506
P n A, EELIEL'E;!.-'[‘I.-'(],['(]} o . e 7] ip.rl,e) vy

R, e +cns[u]}
= asin —'xin[k]} =5789-deg  a=4698DU since: vy=0 EeAp=0 EcA = acos| —————
rl 1+ E-ms[u]}

’ 3
EC."‘IL] = 1.7 TOF = jz[[EE.ﬂL] — e 5in [EC."'IL] }} - [Eﬂ.ﬂkﬂ — e-5in [EE."'IL{]}}] TOF = 51.132hr
AN 1) \ ) \ \

We can use the same procedure at the moon (Selenocentric).
See Section XVI for the Newtonian Gravitational Solution for the Lunar Trajectory.

We need to determine the values of v1 and Rs in units based on the moon's gravitational attraction parameters.
The Angular Velocity of the Moon (w ) in its orbit is

n ___,—-—'—'____\-"
— .-",
TUH :' Moon
\ , attime b
Moon's sphere of
influence
rad 1
Wy 1= 2.649-10 ﬁT = 213710 -’ﬁ NO= V- Vg -] - Wy TOF g = 135637 -deg
ke

Vim = 1.024kmps Py = 4093 — Vi = 1.018kmps Then Vo = 1.198kmps
g9 = 5.68deg Sme= 2078 : Ip = 4105km llp = 2367km R, = 10.395.DU

3
3 km
M, = 4.903-10° —
5



Time of Flight - Black (hours)

Time of Flight
Develop an algorithm to Calculate Time of Flight

TDFME[‘L-'(].['(],EI)[],}\]} = |hye rﬂ-vﬂ-cnx[q)ﬂ}

2
by
pe —
j
Eg ¢ EnEL'gy['l.-'ﬂ .Tp)

A —

1Ky

e [1-L1
3 a

rl an +R — 2D Rycos()

vy« vip.rl.e) This gives a ditferent value

[ e+ cns[u]} ]
EcAy « acos -

]+E-E{!R[U]}

3
_ E [[E‘:A] _ E.,;-m[&,x] }} - [_Emﬂ —e sln[Ec.-*LﬂH]

hr

A« (TOF e)"

51.132
vp = 10846 kmps  TOFyg(vp.rg.dp. N ) = 0077
tof [‘l.-'ﬂ} = TDFng["'"ﬂ P g }ﬂ Ecc[‘l.-'ﬂ} = TDFHJE[‘L-'{] LI Ay } |

Initial Conditions: rp = 1.05-DU Adititude = 1 — 1DU = 318907 km g =10

hyperbalic = 1 Vipj = 10.8kmps  10.805kmps .. 11.2kmps

Mote: Asthe velocity increases above the minimum 10.8 km ps, the Time of Flight decreases
and the trajectory shape changes from Elliptical to Hyperbolic.

Flight Time & Eccentricity vs. Injection Velocity

T 1.12
5 i
K
=108 u
55 =
a0 =11.0% i
=
mf{“mﬂ-ﬁ =104 L'cc{vinj] 5
—_ “ —_ =
—f1.o2 T
35 L‘Ui
hyperbolic 11
0 ¥
75 SR
0.0
108 10085 109 1095 11 11.05 11.1 11.15 11.2
Vinj
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Polar Plot of the Solution for the Patched Conic Lunar Approximation

ol - e

1+ E-cm[u+ “,lﬂ}

L= —90.002deg . —90.00 1deg .. 41deg ¥ 1= 39.5deg,39.501deg .. 360deg  pfv) =

Mote: A4 is not = 30 deg = 33deg Earth(#) == 1.5sin (8 + ) $= 10,0001 2w

2 2 2
' = 82 ag= 13 'moont @) = rpcosiB — )+ Jam' — Iy sin{8 —g)”

Radius of Moon Sphere of Influence 1 (B, @) == 1 cos(B— ) + ,J]ﬂ.ci2 - rm2 sin{B— ;p}2

Point of Conic Patch

£ = 0.05,0051 .. 0.05 i path (§) = Ty SpShip = 75.5

0.1 0 =
8) = - 0 = 39 5deg
J] — (1 -cos(B — )}~

= 0,00017365 . ¢ ine

Polar Plot: Geocentric Frame - Earth at the Center

From the list of functions shown on the left of the plot below:
riv) shows the Trajectory Ellipse Conic Ptach in blue, Earth(B) is at the center in black, ryaqq(B.9) inred is the

location of the moon atintercept ¢ = 33%, r,(8) is the circle in green of the moon's of sphere of influence,
Fsant8.0) in red is the initial location of the moon at 0°, fm_patn() IS the dotted line path of moon from 0 to . r(y) is
the dotted line that shows the elliptical path back to the earth, and rjj, is the red straight line from earth at center to

the moon to show angle A4. SpCratft is where SpaceCraft enters the Moon's Sphere of Influence. Point of Conic
Patch. Blue dat.

Patched Conic Approx. Trajectory to Moon (Red)
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IA. Apollo Free Return Trajectory: Simulation for CSM to Moon & Back
Trajectory Model: 3-Body (Earth, Moon, Spacecraft) 2D Planar Point Mass with Earth at Center

This 3 body gravitational solution forthe FRT uses the Mathcad Differential Equation Solving Methodol ogy dis cus sed:
arXiv:1504.07964
"Motion of the planets: the calculation and visualization in Mathcad", \alery Ochkov, Katarina Pisa

The aborted Apolio 13 mission was the only mission to actually turn around the Moon in a free-return trajectory.

Solve the Gravitational and Dyvnamics Equations for Earth, Moon, & CSM Trajecto

kg =1 m:= 1 5= 1 MN=1 Sw=1 miin := 60s hr := 36005 kaf = 9.80665M
km -3 2
= - -— = . —~11 N-
km = 1000m kmps = km kph : - mph = 0.447-10 “kmps G = 667384-10 11 N-m

kg
Run Simulation for 160 hrs  Apolle 11 Orbit 77 hrs
FRAME == 988 ngqe == 20000 m:= 999 Mplot ™= 10000 tapd = 16000 (FRAME + 1) fo = 81.44 hr

Eo L n - 1
Time of Fight (TOF) = t,
Trajectory to Moon's Sphere of Influence

Initial x,y Velocity CS5M Radius of Earth Apogee to Moon
Vi = 6.811kmps Vpy = 8.356kmps vogy o= 9.317kmps Re = B370km  @dy gp = 405500km

Define Gravitational and Dynamics Equations for Earth, Moon, and CSM
Mass Start position Start Velocity

Famhe (me X0 Yeo V0 Weo | |[5972-10%%g  om Om  Okph  Okph

Moon. M | My Xm0 Ym0 Ym0 Wm0 |=| 7347-10%%g  d, ap Okm  Okmps 0.97kmps

CSM.s | ms Xs0 Ys0 V0 Ws0 ) | 13600ky  Rg+100km Rg- 100km  vgy vy

Given Solve Set of Differential Guidance Equations for 3 Body Problem of Earth, Moon, and CSM
xe(0) = xgp X0 = vxgp YelO) = yep ve'(0) = vy

G-me-mm-[xmft}—xelft}} G- mE-ms-[fot}—fot}}
Mg Xgnlt) = - p + - S
[J[xeft} - xmft}}2+ [_yEft}— ymft}}zJ [J[Keft]' - :cgl.’t]n'j2 + [_yeft} —yxft}ﬂ
G- mg myy (¥ (0 — v (1)) G- memg (vt — ye(t))
me-Yer(t) = ' + '

3 3
[J[xeft} - :'r.n.lft]n}2 + [yeft]n - ymft}}EJ [J[xeft} - st[}}z + [yeft} - ysft}}zj

Xm0 = Xy X (0) = vy ¥ (0 = ¥mg V(0 = vygyg

Gompy-mg- [xeft} - xmft}} G- mm-ms-[xsft} - xm[t}}
My Xy (L) = : ] + : ]
H[_xmft} - .'-;E[t}}2 + [_ymft} - ‘_l.-'Eft}}EJ N[_xmft} - :c,;ft]l}2 + [ymft} - y,;ft}}zJ
Gmpy mg-(Ye(t) - ¥ (1) G mpy mg-(vg(th — ¥y (D)
My ¥y (1) = - + :

2 1 2 1k
U[_xmft}—xeft}} +[ymft}—yeft}}J U[xmft}—x,.,ft}} +[?mft}—y5ft}}J

x(0)=xgp  x(@=wvxgp W=y vyl = wygp

G-mﬁ-me-[xeft} - xxft}} G- mx-mm-[xmft} - xﬁft}}
m- X ol t) = - g - p
[J[xsm — xa(0)+ (ye(t) - yemﬂ U[Hm ~xm(0)7 + (yel) - ymmﬂ
G.mg.me.[yef[} _!"'sf[}} G- ms.mm.[ymf[} _!"'s“}}
g ¥ t) = - + -

3 3
L{[Hm— fot}}2+ [yxft]l —yeft}ﬂ U[_ngt} - xmft}}2+ [Ygf[} _!l"mft}}zj




IA. Free Return Trajectory: 3 Bodv Sim for CSM to the Moon & Back

Trajectory Model: 3-Body (Earth, Moon, Spacecraft) 2D Planar Point Mass with Earth at Center

Differential Equation Solver

- % * e Xs * .
Yo ¥a
*m m

= Odasolie 1lend -Nede
¥m ¥im
Xg e

b vS - YS =

Initial Ve ocity (kmvs) of CSM at an Altitude of 141 km:

Jvoi + Vg, = 9.31€-kmps

Distance to the Center of the Moon

; - d [tﬂ b.'l
A1) = [J () - 30+ (v - va®)F] ol g 6g
time tg,, just beyond lunar fly by time a t gydot
Xzl tors |
(o 0 tay = 0.1 oone ty = Vo
Nplct Moot ' Re

W-_:UIH-%KEUJ ws:tnz-izus:tn s(t) = fox () = wg(t)?

Finding a Free Return Trajectory (FRT) is a little tricky. First, the trajectory must catch the moon at the exact place
and time as travels around the earth and then after being swing around by the moon’s gravity it must swing back and
catch the earth in such a way as to go into earth orbit. This can present a problem for the Differential Equation Solver.
This is athree body problem. Achange in the CSM's trajectory is influenced by the pull the moon, which in turn is
affected by the pull of the earth. The solver can easily fail to converge on a solution. Achange in angle by 10 degrees
can resultin a large change in orbit time of 4.5 days. We also must check that CSMdoes not crash into moon.

Below is a plot of our FRT solution for the Apollo Trajectory. It shows the CSM's x,y position and velocity from earth to
moon and back. Mote the figure 8 orbit of this Free Return. The Apollo 11 flight time to the moon was 77 hours. Our
simulation is for 81.4 hours. Because of instabilities, c onvergence problems, etc. some trial and error was required.

Simulation of Lunar Free Return Trajectory: C5M Position, Velocity, Distance to Moon

65 tﬂ T 13
® ol Rocket velocity
Ve PiRed ' scale km/s——-_|
60 L"‘:;s e T Distance to Moon—— ! 12
€ —— Unitz of Moon Radii i
' : —11
Yeltend) ast cittes: m'"L”ZSnN : g
Re g Red path Ab*lln time to moon was T74p >
*0e \ + | hrs. This Sim is for g
Yoo lt) 81.4 hours, t, . shown by -
M 45| *Saturn V burns —> GSM Starts out = o @ =
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. Farms a Figure 8 o
RE .‘ o - :
seses 20 . “—Initial trajectory angle was 439 1 2
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Re 15 was choosen to be the Apolune VoA g
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Ysltorb) 4g . - 42 =
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IB. 4-Bodyv Sim of Apollo Free Return Trajectorv: CSM to Moon & Back
Trajectory Model: 4-Body (Earth, Moon, Sun, Spacecraft) 2D Planar Point Mass w Earth at Center

This Simulation Uses the Mathcad Differential Equation Solving Methodology discussed in: arXiv:1504.07964
“"Motion of the planets: the caleulation and visualization in Mathcad”, Valery Ochkov, Katarina Pisagic
4-Body Reference Frame: Earth and moon are initially at 0,0 and the earth and sun are initially not moving.

kg =1 m=1 5=1 N=1 s:=1 min = 60s hr == 3600s kof = 9.B0665M
km = 1000m kmps = km kph = :_m mph = 0.447.10 3Icm;:ns Nplot = 10000
r
Run Simulation for 115 hrs  Apollo 11 Orbit 77 hr
FRAME = 999 4. = 20000  n =999 tong = 1:?“r.|_pmme 1) torp = 58 5r
5 Time of Fight (TOF) = ty,
- 66738410 11 N-m Trajectory to Moon's Sphere of Influence Apolune
kg Initial x,y Velocity CSM  Radius of Earth Apogee to Moon
vy = 1-DBkmps vy = 9.5kmps Ry = 1737 4km Rg = 6370km 04y ap = 405500k
tong = 114 5hr Vosm = o< voye Vogy = 90.365kmps 4y oo = 15210°km
Define Gravitational and Dynamics Equations for Earth, Moon, and CSM
. d 4 !
eis Earth Mg Xop Yeg ep ep | 5.9?2-11}2 kg Om Om Okph  Okmps
ais Sun Mg Xgp Yap “¥ap Wap 3 1.989-1(]30@ -1 3ﬂ-1ﬂsm —BD-1UE km Okmps  Okmps
misMoon | ™m *mo Ym0 'm0 Ym0 | |734740%g o, . Om  Okmps 097kmps
) m | -
sigcsm LM fs0 Ys0 Ys0 Wso ) _ 13600kg  Rg+110km Ry - 86km vy, oy

Given Set of Differential Guidance Equations for 4 Body Problem of Earth, Moon, and CSM

*e': 0} = *a0 Ie'm]' = Y¥ap Fe[m = YeD Yol 0) = Yed *m'[m = Xm0 “n'n'l’{':"’:I = Vim0 Fm{n} = ¥mo an'{m = YYmo

) = G mE.mm.{:mit] - xalt)) . G- Ma-mg-(xg(t) —xgit)] . G- mE.mS.[IBit] - xalth)
=e 3 ¢ 3 3
[0 5 ® 2 (a0 1] [Je0 55025 (300 -150] [ flxet0 - 1602+ (3000~ 560}
eyt = G-Mg-M- (¥ (t) — ¥a(t)) . G- Mg-mg-{¥g(t) - ¥gitl) . G - Mg-mg-(yg(t) - yg(t))
e e" 3 - 3 3
U (xg(t) = xm1t1'|2 + (¥alt) = ¥y (1) 2] | J {xglt) = x5u}'32 +(vglt) - rsm}g] [J (xglt) - x31t1'|2 +[yglt) - rgrtlﬂ
ety G-myy, Mg (k{1 — xpit)) . G - Mgy g xg01) — xy (1)) X G . My Mg xglt) — X (1))
m=m E _ 3
U (X (1) = Xgl1) 2+ (Y1) - vg{t}'|2:| =_J [ Xt = :<5m}2 + (¥ptt) = ysm}z} [J{xmu} - :-csm}2 + (¥l = vsm}z:l
) = G My Mg (valt) — ¥y (1) . G My Mg g (1) — ¥ (1)) . & My Mg ¥git) — ¥ (1))
m ¥ m B
3 r 3
U (xm(t) = xg(1) 2+ (¥mit) - ram]z:| . J {Reg(t) = ns{th]‘z + (¥t - ystt1}2:| [J{ Klt) = xstt1}2+ (¥m(l) - rsttn}z:l
xg(0) = xgp xgd 0} = wigg 15l0) =vsg  ¥elO) =wrgp x5(0) =159 gl0) =wgp  ¥sl0l=ygp ¥gl0) =g
et G-mg-mg-[xa(1) - xg(1)) . G- Mg-mp-(x (1) — x (1) . G - Mg-mg-(xglt) - (1))
5e 3 3 3
U (x50 1002 (50— 160)] [ @2+ (50 —3u @] | JCrs0— 1002+ (150 - y50)]
eyt = G-mg-mg-(¥glt) = v5(t)) X G - Mg M-V = ¥g(1)) ) G- Mg mg (¥g(t) - y5(t))
58 3 3 3
} @ 2 : @ 3 ; . 7
[mgit) = xglt) )™ + |¥glt) — yglt)) [ %ty = my (1) )7 + (¥ (1) = ¥y (1) ) (#gth = xglth )™ = [¥glth — ygit))
e tt) = G- Mg Mg Xy 1) = Xa(t)) . G - Mg My Xy (1) = 2t ) G- Mg Mg |xg (1) - xgl1))
5 g 3 -3 3

] _ 3] |
[J{xatt:l—.u;s{t}_|2+|yaft}—'g'stl}_l2_' U{:mm-xsunz+{ymm—y3un2_~ [J{xstt]—:s{th]-2+w3{t}—yErl}:IZJ

G-Mg Mg ¥alt) — ¥yt G - Mg Mgy ¥lt) — vgltd] G . Mg Mg y5(t) - ¥g(t))
Mg ¥g=(t) = + +

3

3 3
U{ xglt) — x5 + (yg(t) — ¥g(0)%| H () = 2g0)2 + (¥ - vg )| Uixsm —xg))% + (va0) - yg)?|



IB. 4-Body Sim of Apollo Free Return Trajectory: CSM to Moon and Back
Trajectory Model: 4-Body (Earth, Moon, Sun, Spacecraft) 2D Planar Point Mass w Earth at Center

Plot for Sim of 4-Body Free Return Traj: CSM to Moon and Back

Differential Equation Solver

Earth (% | (e |
Ve Yo Initial Velocity (km/s) of CSM at an Altitude of 141 km:
2 2
m ¥m II‘"ux +gy = 9.365-kmps
Moon " y
M| odesone| ™ lang:Toge time tgy, just beyond lunar fly by time t flyby dot
X X ; "
Space| - ; tm0,o0d 4 tay = 0.2 160nr g torn)
Craft | ¥s ¥g Mplot Aplot y. = R,
L X
Sun 4 4 Wi (1) m E:su} Vg (1) = iysu] .35“ - ’m{s{t:nz-i-wstt]2
l‘-.!llla . _kj‘a _.ll ] dt dt
Distance from Earth to Moon Distance to the Center of the Moon o)
2 3 . 2 3 rnllors
demell) = [Jlxmft}— %))+ (¥t = yg(t) ] A1) = [Ji_xmm— x5} + (¥ () = y5(0) } —2 - 3242
m

4-Body S5im of Lunar Free Retumn Trajectory for CSM Distance, Velociity, Distance
40 10
D

: .
E«Inte: Despite appearance, the distance 5?
o “ hetween the earth and moon dp,, dg:_:es not_ change | Rocket Velocity,
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R . F 5
"’e“end] 20 ". Wiﬁw Gti'l”mih - The Red/Moon and g
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Y ) . | isymed around
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] . PR L ‘
— [ L ¥ . i 8 |
gl )0 |_.«Moon (Red) 7 inibial ectory . L . o alg Uty
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AN i . m
& ‘: 10 | CSM Distance Moony= ——
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Re GSM WMEE}’ LL.L‘l " :: d {t.:'
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see S T :
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| © around by moon's pu‘l
-60 ; '
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but gravitational pull of sun, 94
million miles below-left of earth Mote: The radial velocity of the earth around the sun is 19 every 365 days or 1/365°

E?;'ﬂ":ﬂimkﬂ:iﬁ:: per day. Our sim runs 114 hrs or 114/24 days. This results in (1/365%) x 114/24 or 7.50.

The rocket (blue dot )lands back For the purpose of our illustration, we will ignore this added complexity. Think of this as
on earth 114 hours after launch. @ rotating reference frame, such as our experience of us living on a rotating earth



IC. 4-Bodv Sim of Apollo Free Return Trajectorv: CSM to Moon and Back

Trajectory Model: 4-Body (Earth, Moon, Sun, Spacecraft) 2D Planar Point Mass w Sun at Center
We examine 2 different versions of 4-Body Trajector & 2 Conditions of Moeon Gravity: Tumed Off and Turned €

In the first version, above, we pul the earth at the center (0,0) and the sun is at 45° below (below left), 93 million miles av
In the second below, we have the sun initally directly below the earth, 93 million mikes away. The sun is at the center (04
The earth revolves around the sun with a velocity of 30 km's and the moon revolves around the earth at .94 km/s. The

gravitational

pull of the sun pulls both the earth and moon downwards toward the sun. We solve the system of differentia

equations for the spacecraft, earth, moon, and Sun. Then we do a change of varable o make the earth at the center.
Putting the sun at the center gives a more accurate simulation. We have a far closer match 0 Apollo mision times.

Apollo Times to Moon and Back o Earth: 77 and 142 hrs. Simulation Times to Moon and Earth: 77 and 138 hrs,
Run Simulation for 180 hrs Apolle 11 Orbit 77 hrs

FRAME =999 nggqe = 20000 n=998 npg = 10000  tyqq= 133:r_{FME+ 1) tamm = 77hr

o ne Time of Flight (TOF) = tgp
- . -
G = 65733410 " Nkm Trajectory to Moon's Sphere of Influence
g

Initial x,y Velocity CSM Radius of Earth Apogee, Perogee to Moon

¥ = =0.Okmps voy = 8 234kmps RI‘I‘I = 1737 4km R'E = B3T0KkmM dm ap ™ A405500km

6 B ]
sy = |I'~'n,.—2+ Umz Ve 8.229 kmps dg_gp = 147.1.10 km dn_pe = 3-4510'm

Define Gravitational and Dynamlcs Equatlons for Earth, Moon, Sun and Spacecraft (CSM)
e |5 Eal’th mE Kﬂﬂ Y'EU Eﬂ' WEU 5972 1{} ﬂ'l’l’l de_gp —29 kmps ﬂ kmps
SisSun | Mg Xgp Ygo Vigp Wap | 1.989 1030kg Om Om Okmps Okmps
misMoon | ™m *mo Ym0 Ym0 Wm0 | 7347 46%;  oym S ap*Om ap -20.98%kmps Okmps
. m Yop Wigp W
siscsM \Ms 7s0 0 ¥s0 s 12600kg  Ry+334.4km dg oo+ Rg-90km vo - 20kmps  vg, |
civen Set of Differential Guidance Equations for 4 Body Problem of Earth, Moon, Sun, and CSM
(0 =xgg  xg(0)=vigg  ¥elO)=vgp ¥ed0)=wgg (0} =xmp xmi0)=samg ¥m(0) = ¥mg ¥{0) = wimg
G- Mg M- k(1) = (1)} G- Mg mg-{xg(1) - xg(1)) G - Mg Mg-{xgit) - xg1t))
Mg Xgelt) = - : \ !

3

3
u [xglty = asflﬂz +(vglt) - 5'5“”2]
G- Mg Mg(yg(t) - yglt))

a
L{ (g0 = xpn1))% + 1) - rmm}z] { (g(1) - g} # gt~ r;ctnz]
G-Mg- My {¥rt) - ¥gll)) G- Mg Mg (yg(t) - yylt))

Mg Yeell) = 4 -
- \2 1N - 2 12 - Z 2
(%) = xgt)) + (0 = ¥ 1))} [xg(t) = xg (1)) + [yalt) = yg(t)) (math = xg(t)|“ + (vglt) - ¥g(0))
G-y M- {2 (1) — % (1)) G - Mipy-mg-{xg (1) — 2 (t)) G- Mgy Mg 2g(t) — x(1))
My Xgpyelt) = +
o 3 i 7 . 2 7 W2 12 g
[J::mm = Xgt)) + (¥t = ¥g ) :| U:xmm - xgth))“ + (¥t = v4tt) ] [J[rmrt} - x5t} + (¥t = ¥g(t)) ]
B-Mypy- M- (¥ (th— ¥y D) G My Mg ¥t — ¥t G Mppy-Mg-|Yalth =yt
Mgy ¥ppyelt) = 3 + 3 + 3
[ [ty - xﬂm}z +(¥mi - ve{mz] U (i) - xsm}z # (¥pith - rﬂm]z] [ (a0 - :Bm}z-r (¥t - ysm}z]
0 =xgg w00 =wyg  yg(0)=vsp yglO)-wgy xgl0)=ngp  xgl0)=wgy yg(O)=ygp ys(0)=wgg
o G.mg my |'aE(| )= 15[1}'| G- rr'ls.rnm.[xm{ﬂ - :sr_t}]. G.mg mﬁ.q'rﬁ[t} - xglt 1)
I'I'Is-Isl )=
M 3 3
[ (nglth - xatm +(¥glt) - vgith) J U{xg:tr- :mm]2+ (rglth - rmtt}_lz] [J{xsm- :sm_ﬁz+{r5:t1- ysm_iz]
G-mig- Mg {vgll) - ¥gM) G- Mg-Mp (¥ - ¥(1)) G- Mg Mg-(¥gll) - v (1))
Mg ¥g-{t) = +
2 F] i Z 2 i P Z 5
[ \|r [1g(th — g1} +|;ys{'r:|—','3:t}}:| [ (xglt) — X lt))" + [ yglt) — ¥pp(th) ] [-J{Is“]'—"s“ﬂ +{¥glt) - rsmh]
G-Mg Mg-(151) = Xelt)) G Mg Mgy (X (1) = xa(t)) G- Mg-mg(x5(1) = 1g(1))
ms-lg-['ll - +
3 F] -] . . Z 2 . ; 2 2 3
Ul_:ﬁtt}—xgit}} +(¥alt) —¥gith) ] [J{:m{th—xg{l]i + (¥t — ¥glt)) ] [J'Jam — xg(t))” = {¥5() — ¥git)) ]
G-mg mg-{¥g (1) = yalt)) G Mg My (¥t = v} G- Mg-mMmg|¥glt) - ¥t}
mg-yg(t) = + S5

3 3
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IC. 4-Body Sim of Free Return Trajectory: CSM to Moon & Back
Trajectory Model: 4-Body (Earth, Moon, Sun, Spacecraft) 2D Planar Point Mass w Sun at Center
Best Match to Apollo 11: Time to Moon Apollo - 77 hrs, Sim -77 hrs. To Earth Apollo -142 hrs Sim - 138 hrs
Differential Equation Solver

(%) M%) Initial Vedocity (kmi's) of CSM at an Altitude of 141 km:

Ye Ve fwuxz+ "'uyz = 9.234.kmps

II“I‘I Im

¥m Y time tg,, just beyond lunar fly by time

= Odesolve Lolend-"oge t 1
end end
Xg g t=10, ——_teng tyy = 0. —— -teng
¥g ¥s plot plot
; 2

ig g vitg (1) = gtxg{t; W (t) = %ysnt} S(t) = J [wig(t) + 29kmps |+ u:fstt]2

s ) L\¥s ) | s{tyep) = 3.005.kmps

. . Booeltoen)
Imslt) = L{ {%elt) = ke(t))2 + [¥pnt) - :rE[tj}E:I Imsltort
m

Change of Coordinates: Change to Frame Where the Earth is at Center & Use Units of Earth Radius

-3616  dg=dy o

xa(t) yelt) — dg X (1) ¥mlt) — dg xg(t)
1) - — t) = 1) - — - — T} o —
Xgalt) R, ¥galt) . Xmalt) Ry ¥Ymalt) R, i alt) R
 fiyby dot
) 2 3 o 3 Yglt) - dg
drpalt) = J (xmt) = %g{t})“ + ¥yt - (b)) tny. = *ssltorn) tpy, = -1.3= 10 Yeglt) =
Simulation of Lunar Free Return Trajectory for CSM and Moon Distance, Velocity in Earth Radii Units
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I1.C.2 Moon's Gravity Turned On: Free Return Trajectory

Under the influence of the moon's gravity, the CSM now loops around the moon and is redirected

back to the earth on a FRT.

Note that the scale is very distorted. The x direction is 100X larger than the y direction. This is a
result of the fact that the sun is located directly below and the earth and therefore the CSM are
moving at 30 km/s or 67,000 mph around the sun toward the left or -x direction.

Legend - Distance (Units of Earth Radius) versus x distance Legend - Velocity
Black: Earth y Distance. ygs(t) Dotted Black: CSM Speed. s(t)

Red: Moon y Distance, yqsit)

Blue: CSM y Distance, yzs(l)

Solid Purple:  CSM to Moon Distance, dq.(1), Units of Moon Radius
Dotted Purple: Earth to Moon Distance, dg,lt),

Units of Distance of Earth to Moon -
shows that orbit distance does not change
Dotted Green: Moon to CSM, dp.(t)

Units of Distance to L1 Point from the Moon

Simulation of Lunar Free Retum Trajectory for CSM and Moon Distance, Velocity in Earth Radii Units
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Il. Table of Basic Saturn IV Engine Parameters

Stages | mye | Frame |p 0, Velocity| Rate | ThrUst
(#x10%kag) | (%10%kaq) (s) (m/s) | (ka/s) [(x10°N)
1st stage- 5 F1s 2.04 0.136 165 Kerosene/LOX | 2456 13600 33 .4
2nd stage- 2 J2s 0.428 00432 260 LH2/LOX 4220 1190 5.02
S-IVE COrbit-1 12 | 0.0356 165 LHZ2/LOX 45630 216 1
S-IVB TransLunar| 0.0674 00174 312 LH2/LOX 45630 216 1
Park Orbit Payload 0.118
Lunar Module B200kg | 2134kg AerozineMN204 | 3005 |Lp=311s| 4EkN
Total 2571 0.1966

Apollo 11 Day 1: First Stage Liftoff- Lower Atmosphere transport to 38 miles up.
The Saturn ' has three states. The first Stage, which is the largest, consisted of five Rocket dyne F-1
engines, producing 33.4x 108 N (7.5 million pounds) of thrust. The duration of the burn is 165 seconds. The
fuel was RP-1 refined kerosene, and the oxidizer was liguid oxygen (LOX). The center fitth engine was
turned off early to limit the acceleration to 4 g's on the astronauts. MASA reported that the final velocity of
Stage | was of 276 km/s. The spacecraft does not maintain a constant vertical launch pitch angle trajectory,
but angles downward into a near horizontal orbital trajectory. The initial vertical launch had a 10 s delay, then
the pitch angle decreases linearly with time. This pitch profile vs, time is simulated See graph below. This
affects vertical acceleration, avert. At the end of the first Stage the spacecraft is downrange about 58 miles
(83 km) with an altitude of 38 miles. Approximate travel distance of about 69 miles.

Specific Impulse, lsp, is defined as the number of pound-s of impulse (thrust times duration) given by 1 kg
mass of propellant. Kerosene (RP-1) generates an Ispin the range of 270 to 360 seconds, while liguid
hydrogen (LH2) engines achieve 370 to 465 seconds.

Apollo 11 Statistics - Ground Ignition Mass: 64778751 = 2938 = 10° kg

Saturn V S-1 Engine Parameters:

myep = 2.04- 10%kg

Enagine Thrust Change in Momentum, T:

Yexhaust =

Approximate the rate of fuel consumption, massit), with a linear model:

m
2TI5—
5

myg = 2.77-10%kg

Vv

ex -~ Vexhaust

Mframe =

3 ft
Vex = 8907 x 107~

1.36- 107kg

mass1{th = m

R= 1.289-10"

ot

k

w |

T =dimv)idt = Vawnaye X dmidt = vaynaue X Fuel Burn Rate

Ti=vex R =35x10'N

- Rt

lll. Create a Model for Pitch Angle. B of the rocket's trajectory's during Stage 1 Burn. This angle

then determines the resulting g component of the earth’'s gravitational pull, on the rocket, in the direction of
thrust. Call this gy,.,s;. Define a parameter, 1, that can be used to adjust the rate and final angle during
burn. Adjust 1 to match final velocity egual to NASA's Stage 1 velocity. Let the pitch angle, 8, decrease

linearly with burn time, from initially 80 degrees vertical to ~ 30 degrees horizontal at the end of Stage 1 burn.
Di(t) approximates the Drag. The resultant horizontal acceleration in the direction of travel is then: a(t) - gy e

T = 400 90° = /2 radians. o = ;[] — Bt — ]{}sj-[ﬂ.l] + I| Six) = 9.027x Ing[] + xj}exrj[—xg}

IV. Saturn V Atmospheric Drag Data
The AS-503 Flight Evaluation Report gives A
graph of Apolic 8 Dynamic Pressure versus
flight time_ It is approximately equal to
460,000 pounds at 70s, drops off close to
zero at 160s, and has the shape shown at

right." The atmosphere ends at about 100kr

or about 200s into the flight. Thus, we

approximate the Saturn V Atmospheric = —

Drag Force for Apollo Missions, D(t), as
function of recorded time as shown at right.

t
T

PP
DI = 4610 s[ﬁ_s] Ibf
Sat V Aunospheric Drag Force D(1)
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V. Stage | Simulation Equations for Pitch, Acceleration, Velocity, and Distance

thumn | = 1635 Ethrust] (1) 1= gsin(B(t)) NASA's velocity was 2760 m/s
» T—D[t-.r. |} . Sim Stage 1: -
ality = ——— 3
al(y = —— s Vit = J (a1(1) ~ Eyyyst1 (1) dt Vi t(1655) = 2763 x 10—
o E
al(0) = 1288 g al(l1s)= 1356 al(tyypy) = 55388 Vlyyg(695) = 1.03 10" mph

Vlfing) = vl tlu'uxt[[hurn] )

VI. Graph Velocity. Vertical thrust, Tup. Check that Tup >~ 1 g as Pitch 8 is Reduced

This is required to make certain that the vertical velocity does not decrease due to the pull of gravity

Typ_glt) 1= al(t)sin(B(t) g Ty g(10.15) = 1.168

Velocity (red), Upward Thrust (blue) and Pitch (green) vs. time
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Simulate NASA Profile: t

10 s delay to Pitchover Maneuwver Lange ~ pitch

from 45° to 20° to horizontal. Note: The above

Thrust Angle Profile was created by approximating

a graph of NASA's pitch angle profile for State 1
launch.

time (5)

VIl. Calculate Stage 1 Altitude
MASA's Total Distance from launch point by Stage 1 Straight_Line := J f5=€€mile]n2 + f35§mile}2 = 0934 mile

38mile = 61.155 km

The calculated thrust distance is

BY miles, approximately egual to Yhurnl ot
MASA's Stage 1 Travel Distance Curved_Path := J J allt) = g et (D dtdt
of 69 miles. 0 o )

Curved_Path = 87.087- mile
MNASA Stage 1 altitude 38 miles.

Calculate the Stage 1 Altitude

Yhurni
alititude = J V1 s £ sind Bty ot alititude = 48 874 -mile
L]

Calculate the Stage 1 Specific Impulse, Igp:

-k o [
Total [=Ttyymy =374 % 107 58 Specific Impulse, Isp I..:

Impulse, | :

= [, = 288.645
T ompgerg P

I,
Tsiokolvsky's Equation for Stage 1 &v: Av = v paper 10 | Av=3eax 1w’ R
' M — Miyel 5



VIIl. Stage IIB Burn: Velocity Calculation - Assuming 20 Deq Ascent Angle & ~ 0.35q

MASA's velocity at the end of Stage 2 was 6995 km/s at 191 km altitude. At this altitude, drag is not significant.
5 5 m kg
=428 10k = 504107k : = 423 — = 1190 — = 360s
el g My g Vex2 - R, N 'burn2 §

A
Bdegl1) = 90 gsin| oo | = 0.53g

15995 4 ft f
Sthrustl (1995) = 0298-g 1 - —— 90 = 45225 vy = L38Sx 107—  T2:= veyp R = 5.02x 10°N

1
T2
mass2(t) = myyo - Rt a2(t) o= Py — Ethrustl L1910 v2(1) = vlgpq + | a2it) dt
Vinal = “'z[thurlﬂ}

. m
Bthrust1 (191s) = 0.328.g  a2(0s) = 0.534.g u?[thu“ﬂ}=l'}'ﬁ5-g Sim S eIIB:u,-zﬁlml=ﬁ_99?x](r‘T

IX. Calculate the Required Velocity to go into Parking Orbit at Altitude of 191 km

3 M
_ 1 m L 2 . , — _E
G = 6.67-10 = M, = 5.972-10"%g R, := 6370km Vorbital = | G e
g X

N km
Varbital = 7.792:——

Earth's Escape Velocity at 50,000 km C- C Distance:

Earth's Escape Velocity from Surface of Earth:

oM = |t = 3902 K ST e P
YS0Mm = | S = 92 Vecape 1= | = 11183

X. Day 1: Stage IVB Burn #1 - Parking Orbit: Velocity Calculation

Stage IVB is close to the altitude and orbital velocity, where gravity, rather than pulling the spacecraft down,
is providing the centripetal acceleration needed to keep the spacecraft in a curved or orbital path
around the earth. This is the Apollo 11 earth parking orbit.

It will mak e two trips in orbit around the earth before embarking towards the moon.

At an altitude of 191.2 km, Apollo 11 went into a parking orbit.
The stated NASA stage 3 velocity was 7.791 km/s.

i 4 _ Seoo m _ kg R
Pwel = 356:10°kg  mygzp = 123107ke vy = 4630—  R= 216-— thumaa = 130s

5

ft
mass3A(t) := myo 34 — Rt Vers = 1519 10*— L= Vex3R = 1x 10°N
- - 5

1
mass3A(tpym3a ) = 9.06x 10%kg @A = ~ Ehrust1(1655)  VIA(1) = V2q +J a3A (1) dt
L1}

mass3 At

a3A(0s) = 0407-g B3A(tpym3a) = 0.703 e »—3#1\;1“,,'? va,x[_thm.“i;}k
' stage 3 velocity was: 7.791 km/s.

4 . . .
v3Ag . = 1743 107 - mph Sim Stage 3AParking Orbit  v3Ag ., = 7.791-

km

5



Xl. Orbital Mechanics - Estimate Velocity Required for Trans-Lunar Injection, TLI
See for example: ttp://www. brasunig.us 'space/orbmech. him#position

Stage IVB Burn: Fall to the Moon or Trans-Lunar Injection, TLL

For the Apollo lunar missions, the re-startable J-2 engine in the third (S-IVB) stage of the Saturmn ¥V rocket was
used to perform TLI. Apollo data states that the TLI burn provided 3.05t0 3.25 km/s (10,000 to 10,600 ft's) of
Av, at which point the spacecraft was traveling at approximately 10.8 kmy/'s (34 150 ft/s) relative to the Earth.

The final burn causes the orbit to change from circular (constant radius) to one that is elliptical. The final
increase in velocity starts the TLI as the vehicle moves from the circular path around the earth to the orbit of
the furthest point or the largest radius of the TLI. The Apollo 11 trip to the moon took 51 hours and 49
minutes. The average distance to the moon is 238,855 miles (384,400 km). To achieve orbital transfer to the
moon, the vehicle must move within the Lagrangian Point, where the gravitational pull of the earth is egual
to that of the moon. This distance from the earth is 326,054 km.
Refer to the Figure of the trajectory on page 6.

km

Flight Data for Apollo 11 TLI:  Earth Orbit Insertion Space Fixed Vielocity ES(:E{E = 1793 —
5 5

5

km

Sim: Apollo Data TLI Space Fixed Velocity: 35545E = 1083 —
5 5

Estimate the Minimum Veloci uired for Orbit around the Moon
The minimum can be estimated by determining the change in Gravitational Potential Energy from a parking
orbit 100 km above the earth to Lagrange Point 1 (LP1), located between the earth and moon, where the
pull of the earth eguals the pull of the moon. Lagrange Points are positions in space where the gravitational
forces of a two body system like the Sun and the Earth produce enhanced regions of attraction and
repulsion. There are 5 Earth-Moon Lagrange Points.

Distances
s - Earth to Moon Earth to Lagrange Pt 1
Mooy = 5.97- 10 %kg Mpoon = 7-348 107 kg DEoM = 34400km dp p := 326400km
__ i Radii of Earth and Moon
mTLL= 361610 ke Reaptly = 637 1km Royoon = 1079mile

First, Calculate Change in Gravitational Potential Energy to move from Parking Orbit to Lagrange Point 1, ELP1

v G Mesrth Mmoon v 5 Mo arth Mmoon
arth = —G-mpL + Lpl = —LmTLy +
s Reath  DEtoM — (Rearth + 100km) dip  Dpgm - dip

Gravitational PE from Earth Orbitto Lagrange Point 1, B py By py = Vp) — Veanh = 3452 % 10"
From this Change in Gravitational Energy, ETP, we can get required velocity from Parking Orbit, to moon, veg .
From Conservation of Energy. 1 2Erp km

- =y ¥ = E ¥ = v = 11088 —
Neledeld Kinetic Energy = I.ELP1 5 TLI'"PO_Mn LFI PO_Mn - PO_Mn N
This gives Reguired velocity, v

XlIl. Day 1: Stage IVB Burn #2 - Trans-Lunar Injection. TLI. Earth Orbit to Moon

Adiust g for pitch and distance from the earth.

Ethrust3B = B————————sin| ——
(R + 100km)* A2

Payload == 7.1-10 kg T=1x10"N

Mesel = 6.7410°kg My(3p = Mg + Payload Ri= zm-% thum 3R = 3125

T 1
mass3Bit) = myp — Rt a3Bit) = —muxsﬂ-Eft} = Ethrust3B vIB(t) == vIAfa + J;}ﬁ aiB ity dt
a3B(0s) = 0.72.g BB(tyyr3p) = 14192 Apollo TLI Data: 10.8 km/s

km
Sim Stage 3B TLI: v3B¢ .1 = 10.829 —
mass3B(thym3g) = 7101 10% kg I =2age V3Bfina) = 10.820-—



XIII. Graph the Velocity and Acceleration (gs) Profile of the Flight

thurn] = 1655 Mg, = 300s hurnia = 130s Sonai, = 312
{ = — v2(1) == v2(ts) kmps ! VAA(L) = vIA(L-5)-kmps ! viBit) = viB(t-s)-kmps !

_al(ts) D00 a2t s) BAY 5= adAits) adB(t-s) .ﬂ]
E E E

my(t) = masslit-s)-Mkg mo(t) ;= mass2it-s)-Mkg  mqit) ;= mass3A(ts) Mkg  mg(th = mass3B(t-s)-Mkg

adBit) = lf(t < 312,

vgy(t) == 1f[_t.-.: ms,vm},if[m 525 V2t — ]ﬁSLif[t{ ms,vmn—szsy,if[m 987,v3B(t- 675), 10.83))))
gey(t) = if (t< 165, al(t) if (t< 525 a2(t - 165) ,if (t< 675 a3A(t - 525), $3B(t - 675)) )

mgy (1) = if (t< 165, my (1) ,if(t< 525, my(t~ 165).if(t < 675, m3(t— 525),my(t - 675)}})

. . — 1
thum1, = 163 thum3g, = 673 V3B fia) = V3Bijpg) kmps

Mote: g.4(t) creates blue vertical markers at 165, 525, 675, and 987 s at completion of stage burns.

Simulation of the Four Saturn V Burns: Acceleration and Velocity

Saturn V Velocity and g Profile: Launch to Trans-Lunar Insertion
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Burn Time (5)

Mote: The above acceleration is the net acceleration of the vehicle and not the net g thrust.
The g thrust of the engine is approximately 1 g greater than the net g force that moves the vehicle.

Sim: Weight Loss of 4 Saturn V Burns - Fuel Burns & Stage Jettisons

Saturn V - Lunar Orbit-Rendezvous Vehicle Weight Loss vs. time

thurn 1. Uhurn3B.
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b Iy

[
L ey b U LR Uy Led
w
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.

Stage 2 Stage 3-Burni Stage 3-Burn2

Weight (Million kg)
| 3
<
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o ¢
SB53
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1

Burn Time (s)
The above illustrates the LOR Strategy, where a large part of the weight is jettisoned during the flight.



X1V. Day 2-4: Command/Service Module Engine for Lunar & Earth Orbits - Lunar_Module

Service Module| Mass | Mass | t Fuel Vohaust Isp |T=v_*R
Re;::;::f:;tsml My, | Frame [}L?Il'l;?nn (Hypergolic) E’;T:g:: s Thrust
(kg) | (kg) (s) (m,s) (s) (kM)
Command M odule 5560 Pulsed
Service Module Pulsed MMH/M2 04 o1
RCS 120 Pulsed |aerozine/NZ04 290 3.87
Lunar Excursion Module
Ascent RCS 287 4700 Pulsed |Aerozine/NZ04 311 10%410N
Ascent APS 311 2353 Pulsed |terozine/N204 311 16
LM Descent -DPS | 8200 30 AerozineN204 311 45

1,050 kg Reaction Gontrol System, RCS
CSM: Command Module, CM and Service Module, SM
The CM is the cabin that houses the three astronauts. It sits ontop of the Service Module and contains the
Guidance and Mavigation computer controls, which are operated by the pilot. The Command Module's
Attitude Control System contains the Service Propulsion System and Reaction Control System. SM.The SM
contains the SPS and RCS engines. The CM's mass is 12,250 |b (5,560 kg).
The SMconsisted of twelve 93-pound-force (410 N) attitude control jets; ten were located in the aft
compartment, and two pitch motors in the forward compartment. Four tanks stored 270 pounds (120 kg) of
hypergolic monomethylhydrazine fuel and nitrogen tetroxide oxidizer (MMH/MN204). The system produced
small pulses or bursts thrusts as needed over a 30 minute mission period.

Service Propulsion System is the Main SM Thrust Engine

The SPS engine was used to place the Apollo spacecraft both into and out of lunar orbit, and for mid-course
corrections between the Earth and Moon. Italso served as a retrorocket to perform the deorbit burn for Earth
orbital Apollo flights. The engine selected was the AJ 10-137 [9] which used Aerozine 50 (50:50 mix by weight of
hydrazine and unsymmetrical dimethylhydrazine) as fuel and nitrogen tetroxide (N204) as oxidizer to produce
20,500 Ibf (91 kM) of thrust. It needed sufficient fuel to both get it down to the moon's surface and back up.

The Reaction Control System (RCS) provides Rotation Control in All Three Axes

The CS provides the thrust to control spacecraft rates and rotation in all three axes in addition to any minor
translation maneuvers. From an entry interface of 400,000 feet, the orbiter is controlled in roll, pitch and yaw
axes with the aft RCS thrusters.

The forward RCS has 14 primary and two vernier engines. The aft RCS has 12 primary and two vernier
engines in each pod. The primary RCS engines provide 870 pounds of vacuum thrust each, and the vernier
RCS engines provide 24 pounds of vacuum thrust each.The RCS pulses placed the CM in its proper position
for re-entry into the Earth's atmosphere.

RCS propellant mass: 270 b (120kg) RCS engine mass: twelve x 73.3 b (332 kg)

R70Ibf = 38T x 10°N

Lunar Excursion Module, LEM or LM: "Eagle”

LEM was the lander portion of the Apollc spacecraft built for the US Apollo program by Grumman Aircraft to
carry acrew of two from lunar orbit to the surface and back. Designed for lunar orbit rendezvous, it
consisted of an ascent stage and descent stage, and was ferried to lunar orbit by its companion
Command/Service Module (CSM), a separate spacecraft of approximately twice its mass, which also took
the astronauts home to Earth.The LEM was carried above the CM into space. After detaching and
completing its mission, the LM was discarded. [t was capable of operation only in outer space; structurally
and aerodynamically it was incapable of flight through the Earth's atmosphere. The Lunar Module was the
first manned spacecraft to operate exclusively in the airless vacuum of space. it was the first, and to date
only, crewed vehicle to land anywhere beyond Earth. When ready to leave the Moon, the LM would separate
the descent stage and fire the ascent engine to climb back into orbit, using the descent stage as a launch
platform.



ollo Command/Service Module (CSM) from Earth to Moon

XV. Trajectory Sim of
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XVI: Simulation of Descent from Orbit to Moon Surface, Lunar Orbit Descent, LOD

Day 4: Descent has four stages: Orbital, Braking. Approach, and finally, Hovering/Landing
Braking Phase Descent began at 48,814 feet (15 km) from a slightly elliptical coasting lunar orbit, and time to

touchdown is 12 minutes. (This would reguire an average velocity of about 20.5 m/s or 46 mph). Descent initial

orbit velocity is 1.695 km/s (5560 fps). Attitude goes from 24° to 42% in 8 minutes. Target Location is the Sea of
Tranquility is centered at latitude 1. 5 M andlongitude 23. 5° E. See Section XVIl for Nav. and Guidance

Descent is computer controlled. 4 radars target landing site and compute the time to go from current to desired
conditions, TGO. AQuadratic Law is used to computed TGO from measured jerk, velocity, and altitude using the
MAV routines. The acceleration differential between commandedand lunar accelemation is calculated. This is
converted to required thrust and throttle time. When throttle time exceeds throttle region of 10 to 60%, full throttle
orthrust is applied. The Ignition logic determines the time for burn to be applied. Guidance logic is used to steer
craft to selected landing location. target location determines the required trajectory shaping.

Descent uses two Control Factors: Uses Two/Throttle and Pitch Angle - See Throttle in Graph Below

Approach Phase. During the approach phase, the altitude decreases from 7000 to 500 feet, the range
decreases from approximately 4 5 nautical miles to 500 feet, and time of flight is approximately 1 minute 40 secs.

LEM (Eagle)} Descent Vehicle and Engine Parameters

Mass of LEM Thrust of LEM
Mg == 8200kg T)oq = 44.5kN

Initial Orbital Velocity

km
Emoon = 162 Vorh ©= ].ﬁ@ST

=

1 -sm]
Throttle Profilet:  Throttle . (1) == i.f|:[ < 60,04 ,'lf|:[ = 400, 1 ,'lf|:[-=: 500,0.6,0.6-e [ 0 m

Tiod

Tiod m
Full Throttle: —— —g = 3.807— LEM Acceleration: aj.jit) := Throttle g (t)- — Emoon

Mo N Myod

Simulate Descent Velocity: v on(t) = Vorh — J4 app gt des
0

Day 4: Simulation of LEM "Eagle" Descent to Moon Surface
Green Dotted Line -Throttle Profile
Red: Acceleration
Blue: Orbital to Descent Velocity

LEM Descent Profile: Acceleration & Velocity vs. time
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July 20,1969, 20:17:14 UTC: "Houston, Tranquillity Base here. The Eagle has landed.”



XVIl: Simulation of Ascent from Moon Surface to Orbit, Lunar Orbit Ascent, LOA

LEM Ascent Stage - Day 5 From Tranquility Base

Ascent has a single objective, namely, to achieve a satisfactory orbit from which rendezvous with the
orbiting GEM can subs eguently be performed. Nominally, insertion into a 9 by 45 mile at an altitude of
60,000 feet, is desired.

Ascent Engine Throttling Motes: The LMDE operates in two regimes: Full Throttle Power (FTP ) is
approximately 94 2% of rated thrust (9,900 |bs), and the Throttling Regime goes from 12 2% of rated
thrust to 65%~ rated thrust (1,280 |bs to 6,825 |bs).

the Lunar Module Ascent stage didn't't need to attain the 2.4 km/s to escape the Moon's gravity, it just had to
reach a lunar orbit (orbital speed in the range 1.5-1.7 km/'s) o rendezvous with the CSM. Seven minutes
after ignition the astronauts would be in lunar orbit awaiting the rendezvous with the CSM. Once the LIM crew
transferred into the CSM, their LM Ascent stage was abandoned. All three crew returned to Earth in the
Command Module.

The engines of the RCS are placed at the four corners of the lunar module because the center of gravity is

s hifted from the axis of the ascent module as the tanks are emptying. Thus the combined forces of the thrust
and the lunar gravity create a torgue which makes the ascent module turn clockwise. So that the ascent
module keeps a steady direction, this torgue needs to be corrected by applying a counter torgue. The
powered ascent is divided into two operational phases: vertical rise and orbital insertion.

5536 ft/s at 60,000 ft. The reguired Av is 6056 fps. For Apolio 14 the theoretical minimum would have been
6045.3 fps. 1842.6 m/s over ~430 seconds of flight time. After 10 sec of Thrust Angle from vertical of 0
degrees thrust angle varies linearly from 50 to 80 degree from 10 to 430 5.

Run Simulation with Variable Pitch Angleand Engine Throttled from 90 to 64% Thrust

ft 3 m ™ t .
5531’3: = L6BT = 10 < By (1) = 3 I —@(t—10)-| 031+ 700 Sthr_asclt) = gmnm-mn[ﬂuscft}}

Tiga m
My, = 2132kg Tjpa = 16kN gl th = E = Bthr_asc(t) g (430) = T.385 —
a 5"

Throttle, (1) = if (t < 40,0.9,if (t < 435,0.648,0.75)) Thry (1) := 100 Throttle, (1) 3500Ibf = 1.57x 10*N

t
Dagc (1) = 9{1-[] - Pt - ]{J}-({J.Bl + —ﬂ
o 700 Ascent Target 1843 m/sat 430 s

i
Simulate Ascent Vel ocity: Vel t) = Thmtdeascft}j Al dts
1]

3 m
Vasc(430) = 1,844 10" —

LEM Ascent to Lunar Orbit Simulation:
Blue -Thrust Angle Profile of Trajectory
Red: Ascent Velocity Rise Up to Orbital Velocity
Green: Engine Throttle

Pitch (blue) and Ascend Velocity (red) vs. time
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Plot of LEM's Ascent from Moon's Surface to Lunar Orbit:
Red: Ascent Acceleration
Blue: Ascent to Lunar Orbital Velocity

LEM Ascent Profile: Acceleration & Velocity vs. time
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Day 6: Rendezvous and Docking

Eagle is now safely back in its initial lunar orbit.
https :history.nasa.gov/afi/ap11f)19day6-re ndezvs-dock.html

To rendezvous with his CSM the LEM executed a series of burns by its reaction control
thrusters, controlled by the LEM computer on the basis of data supplied by Houston mission
control, that initially put it in a circular orbit at an altitude of 69 miles concentric with the CSM,
and then slowed it down to dock with the CSM. The LEM commander, took over control for
the final docking maneuver. Return docking was very crucial and difficult. The crew returned to
the command module and the hatch was sealed. The C5M and LM separated and the lunar
module was jettisoned. Only the LEM ascent stage was left in lunar orbit.



XVIll: Command Service Module "Columbia” Return Flight to Earth Orbit
Trans-Earth Injection (TEl) by the SPS engine on the CSM

The Eagle reached an initial orbit of 11 by 55 miles above the moon, and when Columbia was on its 25th
revolution. As the ascent stage reached apolune at 125 hours, 19 minutes, the reaction control system, or
RCS, fired so as to nearly circularize the Eagle orbit at about 56 miles, some 13 miles below and slightly
behind Columbia. The SPS fired for two-and-a-half minutes when Columbia was behind the moon in its
59th hourof lunar orhit.

A Trans-Earth Injection (TEI) is a propulsion maneuver used to set a spacecraft on a trajectory which will
intersect the Earth's Sphere of influence, usually putting the spacecraft on a Free Fall retumn trajectory to
earth. It was performed by the SPS engine on the Service Module after the undocking of the (LM) Lunar
Module if provided. An Apollo TEl bum lasted approximately 203.7 seconds, providing a postgrade
velocity increase of 1,076 m/s (3,531 fts).

Sim: SPS engine Burn on the Service Module after the undocking from the Lunar Module (L M)
TEI Control Parameters from Influence of Moon (g-moon) to Earth (g-earth)

SM Thrust Throttle Factor SM acceleration SM mass  mgyg = 14000kg
ThL'nttlE-T..—;M
Tong = 91kN Throttle := 0.9  a = —  — &jin({ 2deg)-
Sh moon mg M £) Emoon
, Amoon
thurnSM = 204s Amoon = 3269 Emoon aTgt = W +.15lg
Il +e 2%
t [ Apollo Mission Data = 1.076 km/s
Svoprlt) = a [—J dt ) 3 m
SM TEI{ Avgn(thumsm) = 1.075% 10 -
0 :

Earth Trans-Orbit: Acceleration & Velocity vs. time
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XIX. Trans-Earth Coast, Mid-Course Correction, and CM/LLEM Separation

Trans Earth Coast.

Apollo 11's return voyage to the Earth was powered by the Earth's gravity. The gravitational effects
of the trans-lunar coast were reversed. The velocity of the CSM initially slowed due to the
gravitational pull from the earth, but as the spacecraft moved away from the moon, the moon's
gravitational effect diminished, while the Earth's gravitational pull increased. Once the earth's
gravitation became dominant, the space craft was accelerated into a freefall, all the way to the
Earth, reaching a velocity of 25,000 mph, as it entered the Earth's atmosphere over three days later.

Command Module/Service Module Separation.

Shortly before entering the Earth's atmosphere at an altitude of 400,000 feet (75 miles), the service
module was jettisoned by simultaneously firing of the reaction control thrusters in both the service
module and the command module. The command module is then rotated by a 1807 to turn the blunt
end toward the Earth.

Reentry.

Land?nr}fg 15 just as dangerous as taking off, and the precise reentry trajectory is crifical to making a
safe landing. Once initiated there is no possibility of a second chance by going around and trying
again if things go wrong. The initial atmospheric drag of 0.05 g experiences by the capsule as it
entered the atmosphere, triggers the Earth landing subsystem, which controlled the reentry process.
The Command Module entered the atmosphere, blunt end first, at 400,000 feet with a velocity
approaching 25,000 mph at an angle of 6.488" to the horizontal, and flew about 124() miles from the
Earth to the designated landing point in the Pacific ocean. At the very high entry velocity, it
compressed the air as the capsule heated its surface to up to around 2760° C, or 5000F, hot enough
to vaporize most metals, turning the capsule into a shooting star. A2 1/2 inch thick, sacrificial
ablative heat shield, which burns and a erodes, in a the self-controlled way, carrying heat away with
its combustion products, protected the capsule from the heat of reentry.

Mid-Course Correction.
Similar to the outward journey, the velocity and angle of approach to the Earth had to be very
precisely controlled to ensure capture by the Earth's gravity and splashdown into the designated area



XX. Re-entry into the Earth's Atmosphere:

Challenges of High Speed Atmospheric Entry Mega := 10°

Crewed space vehicles must be slowed to subsonic speeds before parachutes or air brakes may be
deployed. Such vehicles have kinetic energies typically between 50 and 1.800 megajoules (Apollc 50.000
megajoules), and atmospheric dissipation is the only way of expending the kinetic energy. The amount of
rocket fuel reguired to slow the vehicle would be nearly egual to the amount used to accelerate it initially,
and it is thus highly impractical to use retro rockets for the entire Earth re-entry procedure. While the high
temperature generated at the surface of the heat shield is due to adiabatic compression, the vehicle's
kinetic energy is ultimately lost to gas friction (viscosity) after the vehicle has passed by. Ballistic warheads
and expendable vehicles do not reguire slowing at re-entry, and in fact, are made streamlined so as to
maintain their speed. For Earth, atmospheric entry occurs atthe Karman line at an altitude of 100 km
(6214 mi/ ~ 54 nautical mi) above the surface.

Apolio 11 Re-entry procedures were initiated July 24, 44 hours after leaving lunar orbit. The SM
separated from the CM, which was re-oriented to a heat-shield-forward position.

Apallo 11 was 19,914 nautical miles [36,881 km] from the Earth approaching at a velocity of 13,695
feet per second [4,174 m's or Mach 12.3]. It was 2 hours, 14 minutes, 16 seconds away from entry

into the atmosphere.
The CM then adjusted its attitude — or orientation respective to the Earth’s surface -- using its thrusters so
that the base of the module faced towards the Earth's surface.

Apollo Journal: https/fwww.hg.nasa gov/alsj/

Earth Orbital Re-entry Atmospheric Draq Profile - Apollo 7
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XXI. Strategies for Dissipation of Heat from Atmospheric Braking
Command Module, CM. Heat Shields

The interior of the command module must be protected from the extremes of environment that will be
encountered during a mission. The heat of launch is absorbed principally through the boost protective cover, a
fiberglass structure covered with cork which fits over the command module like a glove. The boost protective
cover weighs about 700 pounds and varies in thickness from about 310 of an inch to about 7/8" (at the top).

There are 4 possible ways to dissipate or shield a rocket's interior from this heat.

1.1ICEMs come in at high angles and spend little time in that atmosphere to minimize random effects of
turbulence and distortions of the atmosphere and thus attain high target accuracy. The more time a missile
spends in the atmosphere, the less accurate.it will be. ICEMs employ heat sinks, which delays the time it
takes to spread the heat. This thermal delay to peak temperature, protects the electronics before the target hit.

2.The Space Shuttle came in at an angle and, slowed down, and used tiles that get very hot & radiated the
heat away. It used 22,000 ablative insulated silica glass tiles, glued to the aluminum body with silicone
adhesive, that heated up to very high temperatures, but provided thermal insulation, and then radiated the heat
away. The risk of this method was that loss of just a few tiles in a critical area, left that region unprotected, and
the result could be catastrophic. The result could be like a blow torch on the aluminum body. This was the
cause of the Columbia disaster in 1981. It was estimated that tiles represented 10% of the risk of failure of
Space Shuttle.

3. Apollo Missions used the ablation method. They used flat nose cones and a shallow entry angle to slow
down entry. The slow re-entry also minimized the de-acceleration to protect the astronauts.

The flat Apollo CM nose cone heated up, but they had a ablative material deposited on the cones that absorbed
and ablated the heat. This heat went into ablating (melting and boiling off) the nose cone material. The process
was similar to pouring water on a fire, or using ice to cool down a drink on a hot day, only instead of melting of
ice in drinks, the ablative material vaporizes. Vaporization, like boiling water, absorbs and carries huge
ameounts of heat away. Cone materials are used that have a very large heat of fusion. The ablative material
that did this job for Apollo was a silica impregnated phenolic epoxy resin, a type of reinforced plastic.

Total weight of the shield was about 3,000 Ibs. Heat of fusion 143 kCal/mol. 143 kCal/68 gm = 8.8*1076 J'kg

The temperature on the CM's surface climbed up to 5,000 degrees Fahrenheit, but the heat shields
protected the inner structure of the CM. The heat shield was ablative, which means that it was designed to
melt and erode away from the CM as it heated up. From the ground, it would look as if the CM had caught
on fire during its descent. In reality, the ablative covering is what kept the astronauts inside the CM safe --
the material diverted heat away as it vaporized.



Calculate Terminal Velocity of Command Module Prior to Parachute Deployment, v,

Mass of the command module, CM: 5808kg
Drag coefficient, Gy, ~ 1.3 (See Apollo Cy Graph from following page). We time average this to get Gy ayq
Area of the CM's heat shield: 11.631 m2 (125.2 f12)

Altitude Drogue parachutes deployed: 24,000 feet (7315.2m).
Density of the air at that altitude: 0.57 kg/m3.

2 kg
mpg = 14690kg Cd_u‘l.-‘g =13 Arpg = 11.6m Pair_chute ©= {].5'3"—_5
m
“meme 183.083 409 545.mnh
Vigrm = Vigrm = 183.083— Vierm = 545 mp
m Pair_chute’ Ac M'Cd_avg r 5 = E

Energy Dissi by Heat Shield to Atmosphere during ReEnfr

2

1 2 | 2 - km m

5

g . Heat_Loss ) s BTU
Heat Loss= 1.212x= 10 -BTU Heating_Load = 1— Heating Load = 9.707 = 10F —
CM fi~

Heat_Loss = 1.279x 10°-Mega-]

This is a tremendous amount of heat that must be dissipated by the vehicle. What If the vehicle were made of
solid aluminum? Al has a heat capacity of 921 J/kg-K or 0.22 BTU/Ib-*F. The rise in temperature would be:

) Heat_Loss 4 The boiling point of Al isjust 4478 F.

ATrige = TU Alyise = LTOTI0F 44 e did not have some way of dissipating

mgpy-0.22 bF this heat, the vehicle would melt, then and

boil away.
Apolio Ab lative Shield Temperature Rise
7001 Heal Loss
Mhield = Ahisa,= 1) AT = 45.764K
Mehield'| ®-* ke K

The atmosphere acted like a braking system on the spacecratt. To further slow the CM's
descent, the spacecraft used mortar-deployed parachutes.

Parachute deployment occurred at 195 hours, 13 minutes.

The pilot chutes are deployed at about 10,000 feet (3.05 km) by a barometric switch, pulling
the three main parachutes from their containers. The ELS was designed so the drogue chutes
slow the descent down to roughly 200 km/h (124 mi/h) before the pilot chutes pull the main
chutes, eventually slowing down the CM to 22 miles per hour (35 km/h) for splashdown and to
roughly 24.5 mi/h

(39.5 km/h) with only two main chutes properly deployed, as it happened during the Apollo 15
splashdown.

After a flight of 195 hours, 18 minutes, 35 seconds - about 36 minutes longer than planned -
Apollo 11 splashed down in the Pacific Ocean, 13 miles from the recovery ship USS Hornet.

During a water impact the CM deceleration force will vary from 12 to 40 G's. of the waves and
the CM's rate of descent. A major portion of the energy (75 to 90 percent) is absorbed by the
water and by deformation of the CM structure.

The module's impact attenuation system reduces the forces acting on the crew to a tolerable
level. The impact attenuation system is part internal and part external. The external part
consists of four crushable ribs (each about 4 inches thick and a foot in length) installed in the aft
compartment.



XXIl. Simulate Drag Force or Drag Coefficient on CM - Five Different Ways

W e call the forward part of a space vehicle that pushes the air out of the way the nose cone. The air resistance
for the nose cone is determined by a factor caled the Drag Coefficient. The Drag Force is given by the relation:

Drag Force or Drag = C, p vZA/2

where Cd is the drag coefficient, v is the velocity, p is the density of air, and Alis the frontal area The drag also
depends on the angle that the nose cone makes with the vertical. It can be measured from wind tunnel testing
ordata from the firing of projectiles. It is considerably more difficult for the case of rocket re-entry where the
density of air varies with altitude and heating causes blow torch level air temperatures.

Mote from the above eguation the knowing only the Drag Coefficient is not sufficient to obtain the Drag Force.

We must also know how the air density. But in the case of a rocket, the air density changes significantly with

altitude. Thus we also need to know how the altitude changes.But the altitudes changes with both time and

velocity. The density also changes with air boundary layer temperature, which is a function of heatflow to CM.

We will get values of the Drag Force by 5 different methods:

First we must model the variation of air density with respect to altitude

0. Atmospheric Variation of Altitude (z) of Temp(z), Pres(z), and p(z)

1. Variation of Cd with Mach Mumber from tables. Mach Mumber is the velocity in multiples of speed of sound
From this we can create a function to approximate the variation of Cd with Mach Number.

2. Reentry Data: Velocity, Altitude, vs time Acceleration is Av/At or slope.  Data: Apollo 8 Mission Report

3 .Theoretical Calculation of maximum acceleration. This does not model the altitude.

4. Constant Cd with variation of density p with altitude Obtain altitude from velocity or time data from method 2

5. Constant Cd with constant value of density p

The method that is ultimately successful is that is.determine the acceleration and then simulate it.

0. Atmospheric Variation with Altitude (z) of Temp(z), Pres(z), and p(z)
Atmosphere model: US 1976 Standard Atmosphere (z < 11,000 m): Troposphere

The ideal gas law in molar form,

Temperature (K) -=  T(z):= 288.149 - 00649. = which relates pressure, density, and
m 55 temperature:
52
Pregsure (Pa) = Rz = ]{]]325-(1 — 2.26-10 S-E] P = pRﬁllﬂ'iﬁ['T
3
, P [z- 1 } kg
a — i k
Density (kg/m®) > p(z) : 1107 ag7 o Speedof Sound (misec)  p(ift) = 1.19 gt
- vlz) = /4018 Tiz) m’
1. Variation of Draq Coefficient with Velocity (Mach 0 to 10): Mach1 := 340 —
5
Machl = Te).558 mph
Mach=(0 025 05 075 | 125 15 1.75 2 25 3 35 4 5 6 7 & 9 10 11 12 13 jT
Cyq=1(03 0275 26 275 375 51 55 525 47 35 27 225 21 .2 21 23 25 26 26 .26 .26 26 }T
Interpolate for Cam(M) := interp| cspline | Mach .Cd} Mach,Cy .M} Cam(13) = 0.26
Altitude vs Mach # -> ' '
Drag Coefficient vs. Mach Air Density vs. Alt
0.55 I
= 05 oy
-2 0.45 = I
= 14 - plaltfit )
& CamMach)g 35 = 0.1
o 03 = 3
%ﬂ .25 = - .01
a 0:2 A
015 2 : ¥ 10
¢ 2 4 6 & 10 12 | 0 10 20 3040 S0 60 70 80 90 100110
Mach alt

Mach Number Alttude (x 1000 ft)



XXIll. Apollo Re- Entry: Velocity, Altitude, CD Flight Data vs. time
Apollo Time History of Trajectory Parameters AS-202
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2. Apollo 8 Mission Report, pq 5-22: Re-entry Altitude x 1000 ft vs Velocity x 1000 ft/s
Put Data in Functional Form: Alt(v) & Vel(t). Mach Number Velocity Decreased from 31 to 0

tgn == (0 20 39 60 80 100 118 128 130 150 160 180 190 200 220 240)'g. Vel & Alt Data
velgp= (148 135 12 10 8 58 4 35 3 28 1§ 17 1 8 079 0.7)" velyy, = ksmooth( tgy, vel g, .40)
altgy = (175 160 158 140 130 120 105 100 97 90 78 60 58 50 38 28alg,g = ksmooth iy, altgy, 40)

Reverse Order, Make data ascending for Interp Fn B= 0,115 velg,: = vely, 5 altg; = alty, 5
n 15=n n 15-n

Interpolate Data for Altitude vs Velocity: Al (V) := interp[cspline ["'"Eldui'a“dnl} -"'"Eldnl'“ltdni-v}

. 1 3 X 4
Add Units of fps  fps:= frsec  Alty, (v) = m:dni[—J 10 Al (10%s) = 1768 % 10*m

10°fps

2 Break Velocity Data. vel, into 2 Regions of different Slo or Accels - Below Graph Shows 2 Slo

. 1000ft
This Mathcad accell = 5Ian[xuhmmrix[[dn,ﬂ,ﬁ,ﬂ.ﬂ},Ruhmun'ix[veld“.ﬂ,ﬁ,(],[]}}- =

"slope” function ' ' S LO00ft
finds the slope accel? := slope(submatrix(ty,.7,13,0 ,ﬂ} .submatrix(vely, .. 7.13,0 ,ﬂ'”-—j
. . . 2

Acceleration1 for 0to 120s Acceleration2 for 120 to 200s

accell = 29.g accel2 = -1.11-g

See that Blue Velocity Curve has two slopes = Av/AL. Interpret this as accel1 (-2.9g) and accel2 (-1.11g)

Plot of Apollo Splashdown Data: Velocity & Alititude vs.time
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£
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" - 2] il &l 104} 120 144} 160 1580 200 l;ﬂ
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47— = 1369 = 10" — Lan
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3. Theoretical Maximum De-Acceleration from Atmospheric Drag

kg
- 2 . — 052
Parameters for the Command Module Drag =Cqp voA/2 Pair_avg = 03 o
. . 2
Earth Atnuspr]enc Scalgﬂlﬂtuc@e 5 Ay = 11.5m b0 = 122 SE Lg:= 129 ~:= 50deg
- Characterizes Density Profile m ar T T
BC = — m 0.000139
Ballistic Coefficient, BC: - a4 Aem BC — 990,226 kg A=
4 determines complex shape dependencies. T 2 m

2 .
Vie_entry 3 sin(~y)

anmx[_""'re_e ntry '“I'} : e

1 Pair_avg
alititudey oy (1) = —In| —————
amax (V) = 7 [Ec-ﬁ-slnf“,'}

Maximum Acceleration from Atmospheric Drag, amay:
y is the vehicles's flight-path angle
Reference: FAA Medical Studies4.1.7

Returning from Space - Re-entry
Hi Speed Drag Calculations

3. This gives a maximum acceleration of 3.4 g. km
This value is close to accel from method #2. dnmx[3-‘5‘ ~ .5dEg] = 3.456-g



XXV. Atmospheric Braking & Splashdown CM Acceleration and Velocity
Simulate Re-Entry Velocity Profile for CM

m
Ventry == 4174—  Vepiry = 9337 x 10" mph

Spacecraft Ga:rm.etry Area Shield, As Diam 2 , m m"
Diam := 12ft + 10in Ay =T 5 D =C,4 v= AR mps 1= — kmps = 107 —
Mg = 14690kg = § 5

Simulate Draq Coefficient as a Function of how Altitude - Density var ies with velocity to get a(v)

. . 1 v 3 7 Dragiv)
4. Drag Variable Density( At} Dragiv) = =129 p[.-"tltd“[ﬂ]' 10 ]-[H Ay gV = g ———
. . 1 DRAG(v
5. Drag Fixed Altitude @& 100000 ft : DRAG(v) := — 1.29-p| ]{I]f[}"l.-'z'ﬁ.i apmsv) = |g— —
¥ X . =
= Mem
D(v): Drag Coeff from Density as Fn of Altitude acm4 5. Constant: acm5 is stable, but max g ~22
is not very stable. root function does not converge D(v). root function does not converge
|
0 { 8
el v kmps 20 ]l " 25| Vg kmps ) 6
L U 2
i i
4 35 X 25 2 15 1 05 0O 4 35 3 25 2 15 1 05 O
¥d Yd
5. Constant Drag Coefficient Velocity vs time 2. Simulate Splashdown Drag Data
v Accel. asim. varied from 2.9 to 1.1g
0 (t {1 o av.v (1 S
= u-mps L= = ool - sec — T — N -mps ag; =l :
hA : ems (1 —dems (V- mps) l Simlt) [&] £
<4000 29
vel 5 (200) = o 1 +e

Convergencetol = 0.1
Simulation of CM Velocity from Simulation of Apollo 8 Splashdown Draq Data

m ' ] km ft
‘“'spashdn[tl‘ =440 — — | agyy,(t) dt-s ""5}1:35|1dn[ 119.9) = 1.607. — 148 1000— = 4.511-
5 ; &
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“i : :

5

#2. Simulation of Apollo CM Drag Acceleration asim and Resultant Velocity

Velocity (km/s) Blue, Accel(gs) vs. Re-entry time (sec)

4 Ilm= 3281t

4

- 15 Vspashdnl U .
2 N kmps =
é 25 Vel :
5 3.281 =
k2 2 =
B el =
5 1.5 velgpys(t) }q.a
< | krmps

(.5

¥
1] 20 40 6l Bl 10 120 140 160 180G 2000 220 EJH}

Lt gyt

. Simulation with Fixed Altitude is not very accurate.
time (s)



XXV. Trajectory Sim of Command Module (CM) from Moon to Earth Splashdown
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XXVI. CM Splashdown: Parachute Terminal Velocity

Parachutes were a vital part of the Apollo Mission. They are deployed prior to
splashdown for the Apollo command module, CM. The CM could not survive
(remain intact) from a hard (high speed) crash into the water, unless slowed down to
about 25 mph. For safety and redundancy, the CM had three main parachutes.
Terminal Velocity occurs at the velocity where the Drag Force of the parachute
equals the force of gravity, or the weight of the CM. Three main parachutes were
huge. The amount of material in them was about 1/2 an acre.

The main parachutes were opened by the pilot parachutes at 10,000 feet, and slowed
the rate of descent of the command module from 175 miles per hour to 22 miles per
hour. In the case of the failure of one parachute (as happened to Apollo 15), the
remaining two would be able to decelerate the module to 25 miles per hour. These
parachutes held the command module at 27.5 degrees so the module's slanted comer
would penetrate the water first, lessening the impact force. After splashdown, the
risers of the main parachutes were cut and the parachutes released.

A

chute = ?H.CL'E

I 2
Dchuteh".ﬂll} = ?Cdpfdl[}‘l.' .'&CL'I'LI[E

Terminal velocity Dehute = Weight

at 10,000 ft
occurs when: Imepg B
¥terminal =

1 Vierminal = 39.694-mph
0.5 p( 10ft) e

At launch the Apollo spacecraft was 363 feet tall and weighed 6.2 million pounds. At
splashdown it (the remaining command module) weighs 11,000 pounds and 1s 36 feet
high. Just 0.2% of its original weight and 1/10th the height.




AstroDynamics Glossary and Keplerian Model

In the Keplerian model or elements, named after Johannes Kepler (1571-1630). satellites orbit in an
ellipse of constant shape and orientation. The model relates quantities measured from the earth to
properties of an ellipse. The key to this is that area is swept out at a constant rate in Kepler's model.
That is, (t-TVA = Period/(T a b), where T is the time of periapsis passage and A is the area swept out.
The Earth is at one focus of the ellipse, not the center (unless the orbit ellipse is actually a perfect
circle). The real world is slightly more complex than the Keplerian model, these are compensated by
introducing minor corrections or perturbations. the six independent constants defining an orbit that
were These constants are:
argument of perigee, ® — angle from ascending nodes to perigee point along orbit, measured in direction
of satellite’s motion
eccentricity, e — defines shape of orbit
inclination angle, i — gives angle between a satellite's orbital plane and the equator
right ascension of the ascending node — gives the rotation of orbit plane from reference axis
semi-major axis, a — defines the max size of orbit
true anomaly, ¥ -- or B defines satellite location on orbit. a(l — ez}
Equation of Ellipse. Position r for angle 8 relative to the focus: T‘(ﬁ') = —

1+ ecosd

Kepler's Equation: relates an orbit's Mean Anomaly (M) with its Eccentric Anomaly (E):

Mit) = E(t) - e sin (E(t)). Kepler's Equation is transcendental and therefore cannot be solved
analytically for E(t). Instead, computers can be used to find the best value of E(t) that satisfies the
equation for the known values of M(t) and e. Once E(t) is determined, the True Anomaly, n(t), can be
determined. For example: To compute the position of a point moving in a Keplerian orbit.
Given: Observation gives that the body passes at (x,y) coordinates x = a(l — e), y =), at time t = t0,
then to find out the position of the body at any time, you first calculate the mean anomaly M from the
time and the mean motion n by the formula M = n(t - t,), then compute the value E.  This then gives

the coordinates: x = a (cos(E) -e) and y = b sin(E)
Angular Momentum of Ellipse, h: Related to the semi-latus rectum, p. p = h2/), where 4 = G Me

Apogee, r, =a(l+e)
Perigee (Periapsis), r,= a (1-e), Point along the longest axis, a, (but nearest to the body foci)

Ascending Node (): The precise point in a satellite's orbit that intersects the equatorial plane of the
Earth as the satellite moves from the southern to the northern hemisphere (ascending).

Descending Node (G): The precise point in a satellite’s orbit that intersects the equatorial plane of the
Earth as the satellite moves from the northern to the southern hemisphere (descending).

Argument of perigee: angle from ascending nodes to perigee point along orbit, measured in direction o
satellite's motion. Mit) = E(t) - e sin (E(t)).

Astronomical Unit (AU): about 149 399 000 kilometers; the distance from the Earth to the Sun.
azimuth: angular distance in degrees measured in a clockwise direction from true north.
Ephemeris: an arrangement of a series of data points defining both the position and motion of a satellite

Eccentricity (e): defines how oval the satellite's orbit is. It is mathematically defined as the ratio of the
orbit's focus distance (¢) to the orbit's semi-major axis (a). e =¢/a



Eccentric Anomaly (E): The angle, measured since perigee, based on the hypothetical position P' on
the circular orbit defined by a line perpendicular to the major axis that passes through the true
position P of the satellite and intersects with the circular orbit at P'. The Mean Anomaly is directly
related to the Eccentric Anomaly through Kepler's Equation. M(t) = E(t) e sin (E(t)).

Ellipse is given by the equation: (x/a)2 + (y/b)2 = 1. Then from the right triangle in Figure: cos E =
x/a. Also, for (x.,y)=(acost. bsint) 0 <t < 2m the parameter t is called the eccentric anomaly.

C
Eccentricity, e ©=7

¢ 15 the distance from the

center to either foci, F.

where a and b are defined as
semi-major and semi-minor axes

acost & —
Focus Distance (¢): The distance from the true center of the orbit ellipse ' & r ' /]
to the center of the Earth. '

Mean Anomaly (M): M was defined by Kepler. It is the angle measured since perigee that would be
swept out by the satellite if its orbit were perfectly circular. It was worked out by geometrical
construction. If Pfa equals the Area (Pfa) swept out by the Ellipse from point a to P, then M = Pfa /
(1/2 a*b). This hypothetically constructed orbit would assume the real orbit's semi-major axis and
its period. The Mean Anomaly indicates where the satellite was in its orbit at a specific time.

The mean anomaly is convenient since it is a geometric quantity which is directly proportional to the
time. M = n # (t - T), where T is the time at the perigee and n = 21/T. Mit) = E(t) esin (E(t)) The
Mean Anomaly, M, equals the True Anomaly, v, for a circle. By definition, M - M, = n* (t - t;).

where M, equals the True Anomaly of an ellipse, v, at time 0, and n is the mean motion. It is the

fraction of an orbit period that has elapsed since the perigee

Mean Motion (n): Number of orbits the satellite completes about the Earth | _ [ H
L]

in exactly 24 hours or where [ is equal to G * Mass. a
Period (T): The time required for the satellite to orbit the Earth (or a planet) once.

Perturbations: small adjustments made to the Eeplerian model of a satellite's orbit; due to Earth's
gravity and drag, a satellite's orbit is not a perfect ellipse of constant shape and orientation.

Semi-Major Axis (a): The distance from the center of the orbit ellipse to satellite's apogee or perigee
point. This is also defined as the average distance of the satellite from the Earth's center. It can be foun

from Kepler's 3rd Law: a’ is proportional to T*  for n = the Mean Motion of the satellite's orbit.

or by Newton's Laws: a*=GM /(2mn)? or a®=GM T2 /4x? = kT where k=GM /4 2
The Semi-Major axis, a depends only on the Specific Total Energy (energy/mass), & = v,* - wr,”> ata
Semi-Minor Axis (b): The shortest distance from the true center of the orbit ellipse to the orbit path.

Semi-Latus Rectum, p: p =a*(1-e?) Itisthe y coordinate of the ellipse ’ 3
t—T = (E - e-sin(E))- | —
Time of Flight, t T: Given the above, we can derive for the time of tlight G-M

True Anomaly (v): The true angle, measured since the perigee that the satellite sweeps out while
orbiting the Earth. See polar equation of an ellipse.



